90 research outputs found

    Effects of gender and aging in patients who undergo coronary artery bypass grafting: From the FU-Registry

    Get PDF
    Background: It is unclear whether gender and aging influence the characteristics of patients who undergo coronary artery bypass grafting (CABG). Methods: We retrospectively reviewed a clinical database of 1,498 patients (male/female = 1133/365, age 67 ± 9 years) who underwent CABG at Fukuoka University Hospital from 1994 to 2010. Results: Male showed significantly younger, higher percentages (%) of smoking and hyperuricemia (HU), higher levels of serum creatinine, and lower % hypertension (HT) and diabetes mellitus (DM), and lower levels of left ventricular ejection fraction than female. In multivariate analysis, all parameters identified independent variables associated with the gender difference. Next, we divided the patients into 5 groups according to age, and each group was then separated by gender. The % of males significantly decreased with aging, whereas % female significantly increased. Although % smoking and estimated glomerular filtration rate (eGFR), and body mass index (BMI) in all patients, males and females significantly decreased with aging, HU, left ventricular end diastolic pressure and the number of significantly stenosed coronary vessels were not associated with gender or aging. Interestingly, % HT in all patients and males significantly increased with aging, whereas that in females was not associated with aging. Serum low-density lipoprotein cholesterol levels in males significantly decreased with aging, while those in all patients and females were not associated with aging. In this contemporary data set, the decreases in % smoking and eGFR with aging were common characteristics in male and female patients. In addition, there were gender and aging differences in % smoking, % HT, BMI and eGFR, whereas no differences were observed in % DM, % dyslipidemia or % HU. Conclusions: Before CABG, high-risk patients with coronary artery disease who is going to undergo CABG may need to be managed more strictly considering to gender and age to avoid CABG

    Syntheses of All-Methylated Ellagitannin, Isorugosin B and Rugosin B

    Get PDF
    Ellagitannins possess a wide range of biological activities and remarkable structural diversity, which commonly include an axially chiral biaryl unit. This paper describes syntheses of all-methylated versions of isorugosin B and rugosin B, which are regioisomeric, ellagitannin-related compounds. The key features of these syntheses involve the construction of an axially chiral biaryl function on a sugar moiety through a Pd-catalyzed intramolecular biaryl coupling reaction, Bringmann’s atroposelective lactone opening reaction, and a two-step ester formation. This is the first synthetic approach for generating ellagitannins featuring a valoneoyl group

    APOBEC3B is preferentially expressed at the G2/M phase of cell cycle

    Get PDF
    APOBEC3B (A3B) is a cytosine deaminase that converts cytosine to uracil in single-stranded DNA. Cytosine-to-thymine and cytosine-to-guanine base substitution mutations in trinucleotide motifs (APOBEC mutational signatures) were found in various cancers including lymphoid hematological malignancies such as multiple myeloma and A3B has been shown to be an enzymatic source of mutations in those cancers. Although the importance of A3B is being increasingly recognized, it is unclear how A3B expression is regulated in cancer cells as well as normal cells. To answer these fundamental questions, we analyzed 1276 primary myeloma cells using single-cell RNA-sequencing (scRNA-seq) and found that A3B was preferentially expressed at the G2/M phase, in sharp contrast to the expression patterns of other APOBEC3 genes. Consistently, we demonstrated that A3B protein was preferentially expressed at the G2/M phase in myeloma cells by cell sorting. We also demonstrated that normal blood cells expressing A3B were also enriched in G2/M-phase cells by analyzing scRNA-seq data from 86, 493 normal bone marrow mononuclear cells. Furthermore, we revealed that A3B was expressed mainly in plasma cells, CD10+ B cells and erythroid cells, but not in granulocyte-macrophage progenitors. A3B expression profiling in normal blood cells may contribute to understanding the defense mechanism of A3B against viruses, and partially explain the bias of APOBEC mutational signatures in lymphoid but not myeloid malignancies. This study identified the cells and cellular phase in which A3B is highly expressed, which may help reveal the mechanisms behind carcinogenesis and cancer heterogeneity, as well as the biological functions of A3B in normal blood cells

    Glycolysis Inhibition Inactivates ABC Transporters to Restore Drug Sensitivity in Malignant Cells

    Get PDF
    Cancer cells eventually acquire drug resistance largely via the aberrant expression of ATP-binding cassette (ABC) transporters, ATP-dependent efflux pumps. Because cancer cells produce ATP mostly through glycolysis, in the present study we explored the effects of inhibiting glycolysis on the ABC transporter function and drug sensitivity of malignant cells. Inhibition of glycolysis by 3-bromopyruvate (3BrPA) suppressed ATP production in malignant cells, and restored the retention of daunorubicin or mitoxantrone in ABC transporter-expressing, RPMI8226 (ABCG2), KG-1 (ABCB1) and HepG2 cells (ABCB1 and ABCG2). Interestingly, although side population (SP) cells isolated from RPMI8226 cells exhibited higher levels of glycolysis with an increased expression of genes involved in the glycolytic pathway, 3BrPA abolished Hoechst 33342 exclusion in SP cells. 3BrPA also disrupted clonogenic capacity in malignant cell lines including RPMI8226, KG-1, and HepG2. Furthermore, 3BrPA restored cytotoxic effects of daunorubicin and doxorubicin on KG-1 and RPMI8226 cells, and markedly suppressed subcutaneous tumor growth in combination with doxorubicin in RPMI8226-implanted mice. These results collectively suggest that the inhibition of glycolysis is able to overcome drug resistance in ABC transporter-expressing malignant cells through the inactivation of ABC transporters and impairment of SP cells with enhanced glycolysis as well as clonogenic cells

    Ceruloplasmin Protects Against Rotenone-Induced Oxidative Stress and Neurotoxicity

    Get PDF
    To clarify the neuroprotective property of ceruloplasmin and the pathogenesis of aceruloplasminemia, we generated ceruloplasmin-deficient (CP−/−) mice on the C57BL/10 genetic background and further treated them with a mitochondrial complex I inhibitor, rotenone. There was no iron accumulation in the brains of CP−/− mice at least up to 60 weeks of age. Without rotenone treatment, CP−/− mice showed slight motor dysfunction compared with CP+/+ mice, but there were no detectable differences in the levels of oxidative stress markers between these two groups. A low dose of rotenone did not affect the mitochondrial complex I activity in our mice, however, it caused a significant change in motor behavior, neuropathology, or the levels of oxidative stress markers in CP−/− mice, but not in CP+/+ mice. Our data support that ceruloplasmin protects against rotenone-induced oxidative stress and neurotoxicity, probably through its antioxidant properties independently of its function of iron metabolism

    The Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016)

    Get PDF
    Background and purposeThe Japanese Clinical Practice Guidelines for Management of Sepsis and Septic Shock 2016 (J-SSCG 2016), a Japanese-specific set of clinical practice guidelines for sepsis and septic shock created jointly by the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine, was first released in February 2017 and published in the Journal of JSICM, [2017; Volume 24 (supplement 2)] https://doi.org/10.3918/jsicm.24S0001 and Journal of Japanese Association for Acute Medicine [2017; Volume 28, (supplement 1)] http://onlinelibrary.wiley.com/doi/10.1002/jja2.2017.28.issue-S1/issuetoc.This abridged English edition of the J-SSCG 2016 was produced with permission from the Japanese Association of Acute Medicine and the Japanese Society for Intensive Care Medicine.MethodsMembers of the Japanese Society of Intensive Care Medicine and the Japanese Association for Acute Medicine were selected and organized into 19 committee members and 52 working group members. The guidelines were prepared in accordance with the Medical Information Network Distribution Service (Minds) creation procedures. The Academic Guidelines Promotion Team was organized to oversee and provide academic support to the respective activities allocated to each Guideline Creation Team. To improve quality assurance and workflow transparency, a mutual peer review system was established, and discussions within each team were open to the public. Public comments were collected once after the initial formulation of a clinical question (CQ) and twice during the review of the final draft. Recommendations were determined to have been adopted after obtaining support from a two-thirds (> 66.6%) majority vote of each of the 19 committee members.ResultsA total of 87 CQs were selected among 19 clinical areas, including pediatric topics and several other important areas not covered in the first edition of the Japanese guidelines (J-SSCG 2012). The approval rate obtained through committee voting, in addition to ratings of the strengths of the recommendation, and its supporting evidence were also added to each recommendation statement. We conducted meta-analyses for 29 CQs. Thirty-seven CQs contained recommendations in the form of an expert consensus due to insufficient evidence. No recommendations were provided for five CQs.ConclusionsBased on the evidence gathered, we were able to formulate Japanese-specific clinical practice guidelines that are tailored to the Japanese context in a highly transparent manner. These guidelines can easily be used not only by specialists, but also by non-specialists, general clinicians, nurses, pharmacists, clinical engineers, and other healthcare professionals

    The whole blood transcriptional regulation landscape in 465 COVID-19 infected samples from Japan COVID-19 Task Force

    Get PDF
    「コロナ制圧タスクフォース」COVID-19患者由来の血液細胞における遺伝子発現の網羅的解析 --重症度に応じた遺伝子発現の変化には、ヒトゲノム配列の個人差が影響する--. 京都大学プレスリリース. 2022-08-23.Coronavirus disease 2019 (COVID-19) is a recently-emerged infectious disease that has caused millions of deaths, where comprehensive understanding of disease mechanisms is still unestablished. In particular, studies of gene expression dynamics and regulation landscape in COVID-19 infected individuals are limited. Here, we report on a thorough analysis of whole blood RNA-seq data from 465 genotyped samples from the Japan COVID-19 Task Force, including 359 severe and 106 non-severe COVID-19 cases. We discover 1169 putative causal expression quantitative trait loci (eQTLs) including 34 possible colocalizations with biobank fine-mapping results of hematopoietic traits in a Japanese population, 1549 putative causal splice QTLs (sQTLs; e.g. two independent sQTLs at TOR1AIP1), as well as biologically interpretable trans-eQTL examples (e.g., REST and STING1), all fine-mapped at single variant resolution. We perform differential gene expression analysis to elucidate 198 genes with increased expression in severe COVID-19 cases and enriched for innate immune-related functions. Finally, we evaluate the limited but non-zero effect of COVID-19 phenotype on eQTL discovery, and highlight the presence of COVID-19 severity-interaction eQTLs (ieQTLs; e.g., CLEC4C and MYBL2). Our study provides a comprehensive catalog of whole blood regulatory variants in Japanese, as well as a reference for transcriptional landscapes in response to COVID-19 infection
    corecore