72 research outputs found

    Orbital and spin magnetic moments of transforming 1D iron inside metallic and semiconducting carbon nanotubes

    Full text link
    The orbital and spin magnetic properties of iron inside transforming metallic and semiconducting 1D carbon nanotube hybrids are studied by means of local x-ray magnetic circular dichroism (XMCD) and bulk superconducting quantum interference device (SQUID) measurements. Nanotube hybrids are initially ferrocene filled single-walled carbon nanotubes (SWCNT) of different metallicities. After a high temperature nanochemical reaction ferrocene molecules react with each other to form iron nano clusters. We show that the ferrocenes molecular orbitals interact differently with the SWCNT of different metallicities without significant XMCD response. This XMCD at various temperatures and magnetic fields reveals that the orbital and/or spin magnetic moments of the encapsulated iron are altered drastically as the transformation to 1D Fe nanoclusters takes place. The orbital and spin magnetic moments are both found to be larger in filled semiconducting nanotubes than in the metallic sample. This could mean that the magnetic polarizations of the encapsulated material is dependent on the metallicity of the tubes. From a comparison between the iron 3d magnetic moments and the bulk magnetism measured by SQUID, we conclude that the delocalized magnetisms dictate the magnetic properties of these 1D hybrid nanostructures

    Unified Quantification of Quantum Defects in Small-Diameter Single-Walled Carbon Nanotubes by Raman Spectroscopy

    Full text link
    The covalent functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent quantum defects enables their application as near-infrared single-photon sources, as optical sensors, and for in-vivo tissue imaging. Tuning the emission wavelength and defect density are crucial for these applications. While the former can be controlled by different synthetic protocols and is easily measured, defect densities are still determined as relative rather than absolute values, limiting the comparability between different nanotube batches and chiralities. Here, we present an absolute and unified quantification metric for the defect density in SWCNT samples based on Raman spectroscopy. It is applicable to a range of small-diameter nanotubes and for arbitrary laser wavelengths. We observe a clear inverse correlation of the D/G+^{+} ratio increase with nanotube diameter, indicating that curvature effects contribute significantly to the defect-activation of Raman modes. Correlation of intermediate frequency modes with defect densities further corroborates their activation by defects and provides additional quantitative metrics for the characterization of functionalized SWCNTs

    Reversible changes in the electronic structure of carbon nanotube-hybrids upon NO2 exposure under ambient conditions

    Get PDF
    Single-walled carbon nanotubes have enormous potential for gas sensing. This study shows that cluster filling is a key to high sensitivity and it opens the possibility for a very high desorption at ambient temperature

    Disentangling Vacancy Oxidation on Metallicity-Sorted Carbon Nanotubes

    Full text link
    Pristine single-walled carbon nanotubes (SWCNTs) are rather inert to O2_2 and N2_2, which for low doses chemisorb only on defect sites or vacancies of the SWCNTs at the ppm level. However, very low doping has a major effect on the electronic properties and conductivity of the SWCNTs. Already at low O2_2 doses (80 L), the X-ray photoelectron spectroscopy (XPS) O 1s signal becomes saturated, indicating nearly all the SWCNT's vacancies have been oxidized. As a result, probing vacancy oxidation on SWCNTs via XPS yields spectra with rather low signal-to-noise ratios, even for metallicity-sorted SWCNTs. We show that, even under these conditions, the first principles density functional theory calculated Kohn-Sham O 1s binding energies may be used to assign the XPS O 1s spectra for oxidized vacancies on SWCNTs into its individual components. This allows one to determine the specific functional groups or bonding environments measured. We find the XPS O 1s signal is mostly due to three O-containing functional groups on SWCNT vacancies: epoxy (C2_2>>O), carbonyl (C2_2>>C==O), and ketene (C==C==O), as ordered by abundance. Upon oxidation of nearly all the SWCNT's vacancies, the central peak's intensity for the metallic SWCNT sample is 60\% greater than for the semiconducting SWCNT sample. This suggests a greater abundance of O-containing defect structures on the metallic SWCNT sample. For both metallic and semiconducting SWCNTs, we find O2_2 does not contribute to the measured XPS O~1s spectra
    • …
    corecore