332 research outputs found

    Synthesis of application specific processor architectures for ultra-low energy consumption

    No full text
    In this paper we suggest that further energy savings can be achieved by a new approach to synthesis of embedded processor cores, where the architecture is tailored to the algorithms that the core executes. In the context of embedded processor synthesis, both single-core and many-core, the types of algorithms and demands on the execution efficiency are usually known at the chip design time. This knowledge can be utilised at the design stage to synthesise architectures optimised for energy consumption. Firstly, we present an overview of both traditional energy saving techniques and new developments in architectural approaches to energy-efficient processing. Secondly, we propose a picoMIPS architecture that serves as an architectural template for energy-efficient synthesis. As a case study, we show how the picoMIPS architecture can be tailored to an energy efficient execution of the DCT algorithm

    Generation of new power processing structures exploiting genetic programming

    Get PDF
    This paper describes the use of genetic algorithms to generate power processing circuits. In order to speed up the algorithm, the fitness of the circuits is evaluated using an explicit integration method based on the 4th order Adams–Bashforth formula. Different combinations of genetic primitives for the crossover and mutation processes have been tested. The algorithm is demonstrated by generating new structures of voltage multipliers, which specifically focus on energy harvesting systems. These systems require low input voltages, usually under the diode threshold value. The Adams–Bashforth method allows to achieve a simulation time that is about five times faster than that of SPICE-based simulations.This work was partially funded by Spanish government project TEC2015-66878-C3-2-R (MINECO/FEDER, UE)

    Massively-parallel bit-serial neural networks for fast epilepsy diagnosis: a feasibility study

    No full text
    There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures

    Simulation acceleration of image filtering on CMOS vision chips using many-core processors

    Get PDF
    This paper describes an efficient numerical solution to speed up transient simulations of analog circuits on a many-core computer. The technique is based on an explicit integration method, parallelised on a multiprocessor architecture. Although the integration step is smaller than the required one by traditional simulation methods based on Newton–Raphson iterations, explicit methods do not require to compute complex calculations such us matrix factorizations, which lead to long CPU simulation times. The proposed technique has been implemented on a NVIDIA GPU and has been demonstrated simulating Gaussian filtering operations performed by a CMOS vision chip. These type of devices, which are used to perform computation on the edge, include built-in image processing functions, turning them into very complex and time consuming circuits during their design. The proposed method is faster that Ngspice for different image sizes, and for 128 x 128 pixels image size it achieves a speed up of two orders of magnitude.This work has been partially funded by Spanish government through project RTI2018-097088-B-C33 and by EPSRC (the UK Engineering and Physical Sciences Research Council) under grant EP/N0317681/1. The research stays at University of Southampton (UK) have been supported by Ministerio de Educación, Cultura y Deporte within the “Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de I+D+I” under grant PRX18/00565 and by Universidad Politécnica de Cartagena - Campus de Excelencia Internacional Mare Nostru

    Stability and efficiency of explicit integration in interconnect analysis on GPUs

    Get PDF
    This paper presents a technique to parallelise a numeric integration solver on general purpose GPU. The technique is based on the combination of space state modeling with an explicit integration method based on the Adams-Bashforth second order formula. The paper studies the stability of variable step explicit method and proposes a technique to guarantee integration stability using this technique. Although explicit methods require smaller integration steps compared to the traditional implicit techniques, they avoid the complex calculations on large which are used to solve the last ones. The technique is demonstrated simulating an RC model of an VLSI interconnect. Results achieved by the proposed variable step explicit method is compared to those achieved by a traditional implicit integration based simulator like Ngspice. The results show that the parallelised explicit solution is one order of magnitude faster than the implicit one for increasingly complex circuits.This work has been partially funded by Spanish government through project RTI2018-097088-B-C33 (MINECO/FEDER, UE) and by EPSRC (the UK Engineering and Physical Sciences Research Council) under grant EP/N0317681/1. The research stay at The University of Southampton has been supported by Fundacion Séneca-Agencia de Ciencia y Tecnología de la Región de Murcia, Programa Regional de Movilidad, Colaboración e Intercambio de Conocimiento Jimenez de la Espada under grant 21187/EE/1

    High-speed analog simulation of CMOS vision chips using explicit integration techniques on many-core processors

    Get PDF
    This work describes a high-speed simulation technique of analog circuits which is based on the use of statespace equations and an explicit integration method parallelised on a multiprocessor architecture. The integration step of such method is smaller than the one required by an implicit simulation technique based on Newton–Raphson iterations. However, given that explicit methods do not require the computation of time-consuming matrix factorizations, the overall simulation time is reduced. The technique described in this work has been implemented on a NVIDIA general purpose GPU and has been tested simulating the Gaussian filtering operation performed by a smart CMOS image sensor. Such devices are used to perform computation on the edge and include built-in image processing functions. Among those, the Gaussian filtering is one of the most common functions, since it is a basic task for early vision processing. These smart sensors are increasingly complex and hence the time required to simulate them during their design cycle is also larger and larger. From a certain imager size, the proposed simulation method yields simulation times two order of magnitude faster that an implicit method based tool such us SPICEThis work has been partially funded by Spanish government through project RTI2018-097088-B-C33 (MINECO/FEDER, UE) and by EPSRC (the UK Engineering and Physical Sciences Research Council) under grant EP/N0317681/1. The research stay at University of Southampton (UK) has been supported by Ministerio de Educación, Cultura y Deporte within the “Programa Estatal de Promoción del Talento y su Empleabilidad en I+D+i, Subprograma Estatal de Movilidad, del Plan Estatal de I+D+I” under grant PRX18/00565

    VHDL-AMS modeling of self-organizing neural systems

    Get PDF
    This paper presents VHDL-AMS models and simulation results for a complex, self-organizing neural system based on the adaptive resonance theory. Such neural systems exhibit both discrete and continuous dynamic behavior and consist of a large number of analog equations, a digital controller with analog and digital feedback paths resulting in the complexity that would prohibit analysis with conventional mixed-signal simulation tools

    Cortisol levels and neuropsychiatric diagnosis as markers of postoperative delirium: a prospective cohort study

    Get PDF
    Polish Ministry of Science and Higher Education, Grant No. 0174/P01/2010/70; 504-06-011

    A circuit model for defective bilayer graphene transistors

    No full text
    This paper investigates the behaviour of a defective single-gate bilayer graphene transistor. Point defects were introduced into pristine graphene crystal structure using a tightly focused helium ion beam. The transfer characteristics of the exposed transistors were measured ex-situ for different defect concentrations. The channel peak resistance increased with increasing defect concentration whilst the on–off ratio showed a decreasing trend for both electrons and holes. To understand the electrical behaviour of the transistors, a circuit model for bilayer graphene is developed which shows a very good agreement when validated against experimental data. The model allowed parameter extraction of bilayer transistor and can be implemented in circuit level simulators.<br/
    corecore