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ABSTRACT 
This contribution presents VHDL-AMS models and simulation 
results for a complex, self-organizing neural system based on the 
adaptive resonance theory. Such neural systems exhibit both 
discrete and continuous dynamic behavior and consist of a large 
number of analog equations, a digital controller with analog and 
digital feedback paths resulting in the complexity that would 
prohibit analysis with conventional mixed-signal simulation tools. 

1. INTRODUCTION 

The advances in the integrated circuit technology have led to the 
growing popularity and a decrease in cost of mixed-signal ASICs 
(Application Specific Integrated Circuits) that comprise both 
analogue and digital circuit blocks. VLSI implementations of 
mixed-signal systems with very large analogue parts are extremely 
difficult due to the complexity and prohibitive times of circuit-level 
simulation. The development of CAD tools in recent years has 
concentrated mainly on automatic design of digital circuits while 
the automation of analogue designs remains largely a heuristic and 
a labor-intensive process. Complexity is the primary reason for 
slow progress in the development and application of artificial 
neural networks in the VLSI technology. The emergence of the 
IEEE standard for VHDL 1076.1. informally known as VHDL- 
AMS [ I ]  has given a new impetus to the advancement of analogue 
and mixed-signal synthesis methodology [2]. VHDL-AMS extends 
the modeling capabilities of VHDL to enable descriptions of high- 
level systems with continuous dynamic behavior that can be 
specified by means of algebraic or ordinary differential equations. 
The first commercial VHDL-AMS simulators [3, 41 are already 
available. It is envisaged that the evolution of automated analogue 
synthesis based on VHDL-AMS descriptions will lead to the 
development of CAD tools capable to synthesize complex 
analogue-digital systems automatically without the need to resort to 
circuit-level verification. In this paper we present a technique for 
developing VHDL-AMS models of complex self-organizing neural 
systems capable to categorize analogue input patterns for further 
recognition. Self-organizing neural networks comprise substantial 
analogue processing parts combined with digital, event-driven 
control (Fig 1.). The system we have chosen as a case study is an 
Adaptive Resonance Theory-based neural network, proposed by 
Carpenter and Grossberg [5] ) .  Neural networks based on this 
theory have been used in a wide range of applications, such as 
fuzzy control systems [9] or image recognition [ 10, 111. ART2 has 
been used for chemical plants monitoring [12] and in biomedical 
applications [13, 141. We briefly describe the system's 
mathematical model, its VHDL-AMS implementation and 
simulation results obtained with Mentor VHDL-AMS Design 
Station [3]. 

2. VHDL-AMS MODEL 

In order to model the ART2 neural network model by means of a 
behavioral description using VHDL-AMs, we have divided it into 
several modules as it is shown in Fig. 1. There are four modules 
that fit to the processing layers of ART2 [5 ,  61: FO, F1 and F2 
layers and the orientative system. But from an electronic 
implementation point of view, we have added two modules to this 
architecture: a memory module (where the weights are stored and 
updated) and a control unit (to synchronize all the modules in the 
input stage, resonating stage and learning stage). It is important to 
emphasize that the description of this system is mixed because 
some analogue modules (layers FO, F1 and F2 as well as the 
orientative system) are included together with a digital control unit. 
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Figure 1. Block diagram of the ART2 VHDL-AMS model 

The self-learning algorithm implemented in our model is shown in 
Fig. 2. In the following explanation we will consider M inputs and 
N categories in the ART2 neural network. 
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Figure 2. Data flow of the ART2 VHDL-AMS model 

2.1 Input layer FO 

The input layer performs the pre-processing and normalization of 
the input vector I = (II, ..., I;, ..., IM) using the equations shown in 
Fig 2. A linear pruning function f(x): {x, x> 8; 0, x< 8) is used to 
eliminate noise from input information, and the L2 norm is used 

for normalization. The noise threshold 8 and the parameter n are 
customizable depending on the application. 

2.2 Inner layer F1 

The inner layer processes the normalized pattern U = (U,, . . ., U,, . . ., 
UM). generated by FO and mixes i t  with the learned pattern 
produced by F2 as it will be explained later. The mixing ratio is 
determined by two parameters: n and 6. The adaptive resonance 
operation in F1 is controlled by the signals generated by the control 
unit (Fig. 1 )  as illustrated in the following VHDL-AMS 
description: 
ARCHITECTURE behavior OF 11 IS 

BEGIN 
... 

-- If there is a new input or the orientative system reset the winner 
-- category in F2, the nodes values are set to 0 (including 
-- intermediate nodes wand q) 
IF (clear='l') OR (reset='l') USE 
xI==O.O; ul==O.O; wl==O.O; vl==O.O; pl==O.O; ql==O.O; 
... 

--When the control unit enables F1, update nodes using ART2 eqns. 
ELSIF (enable='i') USE 
wl==uOlta'ul; 
xl==wl/norm(wl ,@,a); 
vl==f(xl ,threshold)tb*f(ql ,threshold); 
ul ==vl/norm(vl ,v2,v3); 
q 1 ==pl/norm( p i  ,p2,p3); 
... 

-- evaluate p i ,  the output from of this layer according to 
-- topdown weights and winner category 

IF (win=l) USE 
pl==ul td*ztdl-l; 

... 
ELSIF (win=2) USE 

p i  ==~i tCztd2-1; 
... 
ELSE 

pl==ul; 
... 
END USE; 

... 
ELSE 
xl'dot==O.O; ul'dot==O.O; ~l'dot==O.O; vl'dot==O.O; 
pl'dot==O.O:ql 'dot==O.O; 
... 

END USE; 
END ARCHITECTURE behavior: 

The winner category win is a signal evaluated by the output layer 
and the top-down weights ztdj-i (where i=l, ..., M and j=1, ..., N) 
are provided by the memory. 

2.3 Output layer F2 

The output layer implements a winner-takes-all algorithm to select 
a category J for the input pattern. This is done by iterative 
comparison of learned patterns stored in the memory of adaptive 
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weights zjj with the filtered pattern p= (pI, . . . , pi, . . ., p ~ )  obtained 
from FI. The following sample of VHDL-AMS illustrates the 
behavior of F2: 
ARCHITECTURE behavior OF f2 IS 

BEGIN 
... 

-- If there is a new input or the orientative system reset the winner 
-- category, set the node values (activities) to 0 
IF (clear='l') OR (reset='l') USE 
yl==o.O; 
... 

ELSE 
-- Evaluate node activities using p from F1 and bottomup weights. 
IF (resetl='l) USE 

ELSE 

END USE; 

END USE; 

y l  ==p 1 *zbul-I +pTzb~2_1 +p3*zb~3-1; 

yl==O.O; 

... 

END USE; 
--The winner ('win') is the node with the highest activity 
win<= 0 WHEN clear='l' OR reset='l' ELSE 

1 WHEN enable='l' AND resetl='l' AND 
yl>=y2 AND yl>=y3 AND yl>=y4 AND yl>+ ELSE 

... 
END ARCHITECTURE behavior; 

2.4 Orientative system 

The comparison between the learned pattern and the input pattern 
results in the calculation of a matching vector r= (rlr ..., rj, ..., rM). 
A vigilance parameter p is used to monitor the matching level. If 
p > )I r 11,. i.e. no good match is found, the control unit activates a 
reset signal to disable the currently selected F2 node and initiate a 
new search cycle in layer F2. 

In VHDL-AMS terms this is achieved using concurrent signal 
assignments and simultaneous statements in the architecture of the 
orientative system: 
ARCHITECTURE behavior OF orient IS 

BEGIN 
... 

r l  ==(uOl +c*pl)/(norm(uOl ,u02,u03)tnorm(c*pl ,c'p2,c*p3)); 

norma-R==norm(rl,rZ,r3); 
PROCESS (clear, enable) -- set category resets 
BEGIN 
IF (clear='l') AND (clear'lAST-VALUE='O') THEN 

resetl<='l'; 
... 
ELSIF (enable='l') AND (enable'lAST-VALUE='O) THEN 
IF resetl='l'THEN 

END IF; 
reset1 <=ori(rho,norma_R,win, 1 ) ;  

... 
END IF; 

END PROCESS; 

--set reset if no category matches ... 
reset<= resetl='O AND win=l OR reset2='0' AND win=2 ... 
... 

END ARCHITECTURE behavior; 

2.5 Memory 

The memory stores the adaptive weights (zij and zji) for all the 
nodes in F2 and updates the weights when a winner node is found 
in F2, i.e. when the selected category and the input vector manifest 
a good match. We have tested our model with a fast learning, [7 ]  
and a slow learning [6]  mode of operation. The slow learning mode 
is regarded to be more reliable and accurate and also it simulates 
well human or animal learning behavior. However, VHDL-AMS 
models of the slow learning mode are vastly more complex than the 
fast learning one since the former is based on dynamic solution of a 
large set of ordihary differential equations. The slow learning mode 
is represented in VHDL-AMS as follows: 
ARCHITECTURE behavior OF memory IS 

BEGIN 
... 

IF (clear='l') USE 
zbUl-l=l .O/(( 1 .O-d)'Sqti(M)); 

ztdI-l==O.O; 
.,. 

... 
ELSIF (s~ow='~') USE 
IF wind USE 
ZbUl-1 'dOt==d*( 1 .O-d)*(Ul I (  1 .O-d)-ZbU 1-1); 
zbul-?dot==O.O; 

ztdl- l 'dOt~d'(1 .O-d)*(Ul/(l .O-d)-ztdl-l); 

~td2-1 'dot==O.O; 

... 

... 

... 
ELSE 
zbtil-1 'dot==O.O; 
ztdl-1 'dot==O.O; 
... 
END USE; 

ELSE 
zbu 1-1 'dot==O.O; 
ztdl-1 'dot==O.O; 
... 

END USE; 
END ARCHITECTURE behaviour; 

3, EXPERIMENTS 

We have tested our model using several different system sizes. The 
results shown in Fig.3 represent the learning behavior of a system 
with three input signals and five possible output categories. The 
system comprises in total 64 linear and 6 non-linear algebraic 
equations, and 30 non-linear ordinary differential equations that 
provide the learning model for the 30 weights. 

Table 1 shows a comparison between the categorization results 
obtained from our VHDL-AMS simulations with the categorization 
calculated by the dedicated ART2 simulator available from Boston 
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University [8] using the same input waveforms and parameter 
values. With the exception of pattern 8 in Table 1, both results arc 
identical. 

(4 

Figure 3. Simulation results. a) simulated input patterns b) 
winner categories in F2. c) top-down weights. 

Input Values Simul. Category - .  
Pattern time (s) 

1, 12 13 Dedicated VHDL- 
simul. [8] AMS 

1 0.50 2.00 2.00 207.53 A A 
2 2.00 2.00 0.00 221.54 B 
3 3.00 0.00 2.00 468.26 C 
4 1.00 0.00 0.00 101.15 C 
5 0.50 2.00 1.90 211.40 A 
6 1.50 1.65 1.45 330.96 D 
7 2.30 1.80 1.80 302.19 E 
8 2.00 1.00 2.70 260.45 C 
9 1.20 6.00 2.50 265.49 A 

Table 1. Input pattern categorization. 

B 
C 
C 
A 
D 
E 
E 
A - 

4. CONCLUSION 

We have demonstrated the capability of VHDL-AMS to model 
accurately very complex systems with mixed, discrete and 
continuous behavior. The complexity of neural systems based on 
the adaptive resonance theory is the effect of both the system size 
and feedback paths in the discrete and continuous domains. It is 
envisaged that this work will aid automated synthesis of self- 
organizing neural systems in the VLSI technology. Prohibitive 
simulation times for such systems with conventional mixed-signal 
simulation techniques make automated synthesis very difficult. 
Automated analog and mixed-signal synthesis systems based on 
VHDL-AMs, analogous to their existing digital VHDL 
counterparts, will soon emerge. It will therefore be essential to 

provide software aids able to verify complicated mixed-signal 
systems on the behavioral level before mapping them into silicon 
directly from their VHDL-AMS descriptions, without the need for 
exhaustive circuit-level simulations. 
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