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Abstract: This work describes a high-speed simulation technique of analog circuits which is based on the use of state-
space equations and an explicit integration method parallelised on a multiprocessor architecture. The integration step of 
such method is smaller than the one required by an implicit simulation technique based on Newton–Raphson iterations. 
However, given that explicit methods do not require the computation of time-consuming matrix factorizations, the overall 
simulation time is reduced. The technique described in this work has been implemented on a NVIDIA general purpose 
GPU and has been tested simulating the Gaussian filtering operation performed by a smart CMOS image sensor. Such 
devices are used to perform computation on the edge and include built-in image processing functions. Among those, the 
Gaussian filtering is one of the most common functions, since it is a basic task for early vision processing. These smart 
sensors are increasingly complex and hence the time required to simulate them during their design cycle is also larger 
and larger. From a certain imager size, the proposed simulation method yields simulation times two order of magnitude 
faster that an implicit method based tool such us SPICE.  
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I. INTRODUCTION 

Design of CMOS image sensors is certainly a complex task, even more difficult if such devices include built-in 
processing operators which allow them to operate under the edge-computing paradigm. Although digital processing is 
more powerful than analog one, analog functions implemented at pixel level require significantly less power 
consumption, an increasingly more important specification for wireless devices. Among the set of analog operators used 
for early vision tasks, Gaussian filtering is one of the more important functions. It is used to reduce the noise associated 
to the image capture without affecting subsequent processing stages. An analog implementation of this function can be 
achieved using RC networks, which is easily synthesisable in CMOS technology at pixel level of MOS transistors 
working on the triode region [1]. This implementation allows to control the channel resistance through the devices gate 
voltage, which in turns regulates the smoothing degree of the image. This illustrates the increasing complexity of current 
smart image sensors, whose analog design requires extremely large transient simulation times to evaluate the device 
performance. In order to reduce the time-to-market, the acceleration of such simulations becomes a keystone to improve 
the design productivity. 

SPICE type simulators are widely used by current electronic design tools to perform transient simulations of electronic 
circuits. These simulators are based on the modified nodal analysis, which uses implicit differentiation techniques based 
on Newton–Raphson iterations to solve the analog equations at each time step. Although this numerical method has 
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largely proven to be reliable and numerically stable, it consumes large CPU times which easily last hours or even days. 
As alternative to such methods, in [2] an explicit integration technique is used to simulate a mixed signal system modelled 
using state-space equations. The main drawback is that, compared to implicit integration techniques, explicit methods 
require smaller time steps in order to assure numerical stability. But given that they do not require computationally costly 
matrices calculations, their overall computational work load is lighter and so, the overall simulation time can be 
decreased.  

However, simulation speed can be further improved using parallelisation techniques on many-core computers. Among 
those, general purpose Graphic Processing Units (GPUs) have been widely used in the last years in different engineering 
disciplines and also in the field of electronics to speed up the simulation of systems and circuits, in part thanks to the so 
called Compute Unified Device Architecture (CUDA) [3]. There are in the literature some works which have tested the 
acceleration of analog circuits simulation [4-6] while lately, specific works have focused on sparse matrix solvers by LU 
factorization [7-10], being these works still based on classical implicit integration methods. In this work, a numerical 
method based on an explicit integration schema parallelised on a general purpose GPU and able to speed up the simulation 
of passive analog circuits is illustrated. The method is applied to simulate a Gaussian filtering function implemented at 
pixel level on a CMOS image sensor. The rest of this paper is organized as follows: Section II introduces the linearized 
state-space technique and its parallelisation on a general purpose GPU. Section III demonstrates the technique with an 
example of a filtering function implemented on a CMOS imager. The results obtained are presented in Section IV. 
Finally, conclusions and future work are discussed in Section V.  

II. EXPLICIT INTEGRATION TECHNIQUE 

Let (1) be the general state equation of a passive, nonlinear system: 

 𝑥ሶሺ𝑡ሻ ൌ 𝑓ሺ𝑥௧. 𝑡ሻ; 𝑥ሺ0ሻ ൌ 𝑥଴  (1) 

 Its corresponding linearized state equation at time point tk, for k = 0, 1…:. is defined as: 

 𝑥ሶሺ𝑡௞ሻ ൌ 𝐽௞𝑥ሺ𝑡௞ሻ ൅ 𝐸𝑒௫ሺ𝑡௞ሻ (2) 
 

where x(tk) is the vector of state variables at time tk, ex is the vector of excitations, J is the Jacobian matrix of the 
linearized model at time point tk and E is a coefficient matrix for the excitations. For this system, its Adams–Bashforth 
integration scheme is described by: 
 

𝑥௞ାଵ ൌ 𝑥௞ ൅ ሺℎ ൉ 𝛽଴ ൉ 𝐽ሻ𝑥௞ ൅ ℎ ൉ 𝐽 ൉ ∑ 𝛽௜𝑥௞ି௜; 𝑘 ൌ 1 …௣
௜ୀଵ  (3) 

 
where h is the time step and βi. i = 0, …. p are the Adams-Bashforth coefficients of an integration method of order p [11]. 
In an explicit integration method, the step size must be limited not only to bound the accuracy of the numerical solution, 
but also to guarantee the integration stability. For a second order method, its stability is achieved if hꞏ||J|| <1. Given that 
the calculation of ||J|| is computationally expensive, an alternative method to estimate the maximum step size is presented 
in [3]. However, this method is valid for definite negative matrices, as shown in [12], a condition which is not always 
accomplished. Thus, in this work the following estimation is proposed. Given that the Euclidean norm of an m x n matrix, 
||J||F defined as: 

 ‖𝐽‖ி ൌ ට∑ ∑ ห𝑎௜,௝ห
ଶ௡

௝ୀଵ
௠
௜ୀଵ        (4) 

 
is such that ||J||F ||J||, then the step size value which guarantees stability is bounded by: 

 ℎ ൑
ଵ

ට∑ ∑ ห௔೔,ೕห
మ೙

ೕసభ
೘
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       (5) 



 
Although the step sizes obtained using this technique are smaller than those used by an implicit integration method 

and so, a larger integration time is expected, the implicit method requires computationally costly matrices factorization 
calculations. Hence, the balance between these two computational tasks is expected to be favourable to the explicit 
method. The transient simulation of the described system is performed looping (2) and (3) along time. This sequence can 
be easily parallelisable on a many-core computer, since at each  time step the calculation of the variables 𝑥ሶ  only requires 
the previous values of x in an explicit method. So, for a given problem with N state variables, the algorithm can be run 
on N parallel processing units, each one of them working out the value of a single variable 𝑥ሶ i. 

 

In this work, a general purpose GPU together with CUDA programming model has been used. The GPU used is able 
to run parallel threads which are grouped into warps and these into thread blocks. This architecture presents some 
characteristic to be taken into account when programming the device. On the one hand, all the threads within the same 
block can access a common shared memory, which is faster that the global memory accessed by threads from different 
blocks. On the other, synchronisation of threads inside of a same thread block is easier that performing the 
synchronisation of threads spread into different blocks. However, the number of threads per block is limited, and so a 
balance between number of threads and synchronisation speed must be reached. Moreover, given that threads inside a 
same warp are run following a single-instruction-multiple-threads (SIMT) execution model, the divergences of 
instructions between threads in a same warp forces that threads corresponding to different instructions are executed 
serially penalising the GPU efficiency. Finally, data transfers between CPU and GPU should be reduced to the minimum 
because the interaction between the CPU and the GPU a highly computational resources consuming process [13].  

Algorithm 1 describes the parallel implementation of the explicit integration method on a general purpose GPU. The 
algorithm has been coded so that each thread in the GPU computes the value of a single state variable xi. In each time 
step, the GPU kernel is run twice. The reason is that the computation of eq. (3) must wait until all the parallel threads 
have finished to compute the value of variables 𝑥ሶ  according to eq. (2), which is done during the first GPU execution. 
Thus, this provides a mechanism to synchronise these two processes when the number of threads is such that several 
thread blocks are used. 

III. ANALISYS OF THE CMOS GAUSSIAN FUNCTION 

A CMOS image sensor is fabricated using standard CMOS technologies. It is composed by an array of pixels, each 
one containing a photodiode and between 1 to 4 transistors. Fig. 1 shows an m x n CMOS imager where the capacitors 
model the pixels storing the captured light intensity value as in a real CMOS imager. The MOS devices shown in the 

Algorithm 1: Parallelised integration scheme.
t=0    // Initialization  
do    // Loops for simulation time 
 GPU: begin  // Computes xሶ ୧,୩ 
  𝑥ሶ௜,௞ ൌ 𝐸௝ ൉ 𝑒௫௞    // (2) 
  j=0; 
  do   
   𝑥ሶ௜,௞ ൌ 𝑥ሶ௜,௞ ൅ 𝑥௜,௝,௞𝐽௜,௝  // (2) 
   j++; 
  while (j < N) 
 GPU: end    // Threads are synchronised  
 GPU: begin  // Computes 𝑥௜,௞ାଵ 
  𝑥௜,௞ାଵ ൌ 𝑥௜,௞ ൅ ℎ ∑ 𝛽௟𝑥௜,௞ି௟

௣
௟ୀଵ   // (3) 

 GPU: end 
 k++; 
 t=t+h;   // Updates time 
while (t < simulation time); 



figure add the capability to perform an analog time-controlled Gaussian filtering on the image captured by the imager 
[1]. 

 

Fig. 1. Analog implementation of a Gaussian filtering MOS-C network. 

The filtering function is implemented when the MOS transistors and the capacitors operate as an RC network. To this 
end, a common voltage VG is applied to the gate of all transistors. When the image is being captured by the sensor 
circuitry (not shown in the figure), VG is null. Once the image has been captured, the filtering operation starts by applying 
a suitable VG to the transistor gates so that they operate in the triode region. Under these conditions, for a given pixel 
(i,j), the dynamics of the circuit is given by the following equation: 

𝐶
ௗ௏೔,ೕ

ௗ௧
ൌ  െ

௏೔,ೕି௏೔,ೕశభ

ோ೔,ೕశభ
െ

௏೔,ೕି௏೔,ೕషభ

ோ೔,ೕషభ
െ

௏೔,ೕି௏೔శభ,ೕ

ோ೔శభ,ೕ
െ

௏೔,ೕି௏೔షభ,ೕ

ோ೔షభ,ೕ
     (6) 

 
where V≡V(t) and R≡R(v). Ri,j+1 is the resistance of the MOS channel between nodes (i,j) and (i,j+1). Given that the 

channel resistance depends on the drain to source voltage of the MOS device, it will vary with the capacitor voltage and 
thus, a more precise behavioural description is required. However, as shown in [1], due to the charge conservation 
property, the channel resistance of a MOS device connecting two capacitors Ci.j and Ci.j+1 is given by: 

 𝑅௜,௝ାଵ ൌ  
௅

௄ௐ൬ଶ௏ಸ೅ିቀ௏೔,ೕሺ଴ሻା௏೔,ೕశభሺ଴ሻቁ൰
       (7) 

 
being VGT = VG-Vth. and vk(0) the initial voltage of capacitor k. Equation (6) can be written as: 

 𝑅௜,௝ାଵ ൌ  
௄ೃ

൬ଶ௏ಸ೅ିቀ௏೔,ೕሺ଴ሻା௏೔,ೕశభሺ଴ሻቁ൰
       (8) 

 
where KR=L/KW. Let the voltage at each node be the vector of state variables. Using (8) in (6), the state equation of a 
capacitor voltage is given by: 

𝐾ோ𝐶
𝑑𝑉௜,௝

𝑑𝑡
ൌ 

 െ൫8𝑉 ்൅4𝑉௜,௝ሺ଴ሻ ൅ 𝑉௜,௝ାଵሺ଴ሻ൅𝑉௜,௝ିଵሺ଴ሻ൅𝑉௜ାଵ,௝ሺ଴ሻ൅𝑉௜ିଵ,௝ሺ଴ሻ൯𝑉௜,௝ 
൅൫2𝑉 ்൅𝑉௜,௝ሺ଴ሻ ൅ 𝑉௜,௝ାଵሺ଴ሻ൯ 𝑉௜,௝ାଵ 

൅൫2𝑉 ்൅𝑉௜,௝ሺ଴ሻ൅𝑉௜,௝ିଵሺ଴ሻ൯ 𝑉௜,௝ିଵ 
൅൫2𝑉 ்൅𝑉௜,௝ሺ଴ሻ ൅ 𝑉௜ାଵ,௝ሺ଴ሻ൯ 𝑉௜ାଵ,௝ 

 ൅൫2𝑉 ்൅𝑉௜,௝ሺ଴ሻ ൅ 𝑉௜ିଵ,௝ሺ଴ሻ൯ 𝑉௜ିଵ,௝   (9) 

 



Given that the number of neighbour pixels for the pixels placed on the edges and on the corner on the imager is 
respectively 3 and 2, instead of 4, eq. (9) is conveniently adjusted to model their behaviour. So, the set of equations which 
describe the evolution of the state variables vi,j is then: 

 

ௗ

ௗ௧
൮

𝑣଴,଴
𝑣଴,ଵ

⋮
𝑣௠ିଵ,௡ିଵ

൲ ൌ

⎝

⎜
⎛

𝐴଴,଴ 𝐴଴,ଵ 0 ⋯ 0
𝐴ଵ଴ 𝐴ଵ,ଵ 𝐴ଵ,ଶ ⋯ 0

0 𝐴ଶ,ଵ 𝐴ଶ,ଶ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐴௡ିଵ,௡ିଵ⎠

⎟
⎞

൮

𝑣଴,଴
𝑣଴,ଵ

⋮
𝑣௠ିଵ,௡ିଵ

൲   (10) 

 

where Ar,r, are m x m submatrices defined as: 

 

𝐴௥,௥ ൌ

⎝

⎜
⎜
⎜
⎛

𝐽௡௥,௡௥ 𝐽௡௥,௡௥ାଵ 0 ⋯ 0
𝐽௡௥ାଵ,௡௥ 𝐽௡௥ାଵ,௡௥ାଵ 𝐽௡௥ାଵ,௡௥ାଶ ⋯ 0

0 𝐽௡௥ାଶ,௡௥ାଵ 𝐽௡௥ାଶ,௡௥ାଶ ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐽௡௥ା௠ିଶ,௡௥ା௠ିଵ

0 0 0 ⋯ 𝐽௡௥ା௠ିଵ,௠௥ା௠ିଵ⎠

⎟
⎟
⎟
⎞

   (11) 

 
and Ar,s, for r≠s, are m x m submatrices defined as: 
 

 𝐴௥,௦ ൌ ൮

𝐽௡௥,௡௦ 0 ⋯ 0
0 𝐽௡௥ାଵ,௡௦ାଵ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝐽௡௥ା௠ିଵ,௡௦ା௠ିଵ

൲(12) 

 
In both equations (11) and (12), Ji,j are the coefficients obtained from applying eq. (9). Since all the parameters in 

(9) are constant, these coefficients can be computed before the integration loop begins. Moreover, the maximum step 
size that guarantees stability, can be also computed using (5) before the simulation is executed. According to [14], the 
variation of the voltage along time is a Gaussian function with σ = (2tON/RC)0.5, where tON the time during which the 
MOS devices are operating in the triode region. 

IV. RESULTS 

The simulation technique described in previous section has been applied to simulate the system described in equations 
(10) to (12). To test the speedup of the proposed method, several transient simulations of 1µs each have been run for 
CMOS imagers of different sizes. The many-core processor used has been a NVIDIA GeForce GTX 1080, 3584 Core, 
1531MHz and 11 GB of RAM GPU. To evaluate the speed up of the proposed technique, an RC and a MOS-C model of 
the imager have been also simulated using Ngspice on an AMD Ryzen Threadripper 1950X 16-Core Processor, 2180 
MHz and 64 GB of RAM. All the simulations have been done modelling the capacity of the CMOS imager pixels as 
C=10 pF and using the following MOS transistor parameters: K=50 A/V2, W/L=1, Vth=0.5 V and VG=3 V. 

 

 

 



TABLE I.  SIMULATION TIMES FOR EXPLICIT AND IMPLICIT METHODS 

Image size 
Explicit on 

GPU (s) 
Ngspice on CPU (s)  

RC MOS-C 
8 x 8 0.0003 0.005376 0.010411 

16 x 16 0.0007 0.02822 0.042331 
32 x 32 0.008 0.2317 0.348719 
64 x 64 0.040 3.61 4.28152 

128 x 96 
(SQCIF)  

0.230 34.6908 42.8304 

128 x 128 0.434 82.3172 88.021 
176 x 120 
(QCIF ) 

1.103 138.521 144.144 

 

 

Fig. 2. Speedup of the proposed method vs Ngspice for an RC network and for a MOS-C network. 

 

Fig. 3. Transient simulation of the MOS-C image Gaussian filter applied to a 64 x 64 pixels image for t=10ns. a) 
Original image  b) Filtered image 

The processor time required for each transient simulation is detailed in Table I. As expected, the Ngspice simulation 
time required for the MOS-C model is larger than for the RC model and in both cases, the simulation time is larger than 
that achieved using the proposed explicit method. Moreover, the speedup achieved is above two orders of magnitude for 
imagers larger than 64x64 pixels, as shown in Fig. 2. This speedup is however penalised for the QCIF image format due 
to the large number of threads used by the GPU which requires the use of threads from different blocks. So, the data 
transfer between different thread blocks is a drawback for the implementation on a GPU. Fig. 3 shows an example of the 
simulation of a 64 x 64 pixels image filtering using the described method for a MOS conduction time of 10 ns. Compared 
to the simulation using Ngspice, the explicit one presents an absolute root mean square error (RMSE) of 4.6e-3 units. 

 

 
a)                                             b) 



V. CONCLUSIONS AND FUTURE WORK 

This work has shown a technique to reduce the transient simulation time of a passive analog circuit such a CMOS 
image sensor with a built-in filtering function. Although the method has been demonstrated for this particular circuit, it 
can be used with other type of analog circuits. Depending on the circuit characteristics, the technique to estimate the 
maximum step size which guarantees stability to the numerical solution can be even simplified. The described technique 
has shown a speedup of two orders of magnitude with respect to an implicit integration method running on a CPU. One 
of the limitations of this technique is due to the GPU architecture, which limits the speed of the algorithm when large 
amount of data is transferred between threads placed in different thread blocks. On the other hand, the improvements can 
come with the implementation of sparse matrices multiplication techniques and with the use of a variable step 
implementation.  
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