16 research outputs found

    Prevalence of hepatitis B and C and assessment of responsible risk factors among the vulnerable β-thalassemic patients of Azad Kashmir, Pakistan

    Get PDF
    Approximately 350 million patients of hepatitis B and 170 million patients of Hepatitis C are present worldwide according to WHO. Many risk factors are involved in the transmission of theses deadly viral infections but blood transfusion in Beta thalassemic patients is working with two faces, one as remedy and the other is key risk factor in the spread of silent killers. Thalassemia patients registered in Combine Military Hospital (CMH) Rawalakot and Sheikh Khalifa Bin Zayed Al-Nahyan Hospital, Muzaffarabad Azad Jammu and Kashmir Pakistan were studied for the viral hepatitis B and C prevalence. A total of 303 (including 164 males and 139 females) individuals, aged between 1 and 12 years were studied. All the understudy participants were interviewed through questionnaire method. After taking written consent from each participant or guardian, 5 ml of blood was collected from each participant and brought to the working laboratory for HBV and HCV screening through ICT kit method. All ICT positive samples were further confirmed through ELISA. Individuals 25(8.2%) were found positive for both hepatitis B surface Antigen (HBsAg) and Anti hepatitis C antibody (Anti-HCV antibody) after initial screening with no coinfection of both diseases. Out of 25 total infected individuals, 05(1.6%) were found HBsAg positive and 20(6.6%) were found anti-HCV positive. All the ICT positive individuals were further confirmed by quantitative Enzyme Linked Immunosorbent Assay (ELISA) and 23(7.6%) individuals were confirmed for both hepatitis B and C including 05(1.6%) HBsAg positive as well as 18(5.9%) anti-HCV antibody positive individuals. We can conclude that 8.2% prevalence of hepatitis B and C among thalassemic patients is an alarming health concern which directly indicates to pay attention for ensuring 100% safe blood transfusion

    The hydrolysis of hydroxamic acid complexants in the presence of non-oxidizing metal ions 1: Ferric ions.

    Get PDF
    Hydroxamic acids (XHAs) are organic compounds with affinities for cations such as Fe3+, Np4+ and Pu4+ and have been identified as useful reagents in nuclear fuel reprocessing. Acid catalyzed hydrolysis of free XHAs is well known and may impact negatively on reprocessing applications. The hydrolysis of metal-bound XHAs within metal ion-XHA complexes is less understood. With the aid of speciation diagrams, we have modelled UV-visible spectrophotometric kinetic studies of the acid-catalyzed hydrolysis of acetohydroxamic acid (AHA) bound to the model ion Fe(III). These studies have yielded the following information for the hydrolysis of AHA in the Fe(AHA)2+ complex at 293 K: (i) the order with respect to [H+] during the rate determining step, m=0.97, is the same as for the free ligand, indicating a similarity of mechanisms; and (ii) the kinetic rate parameter, k 1=1.02×10−4 dm3⋅mol−1⋅s−1, is greater than that for the free ligand, k 0=1.84×10−5 dm3⋅mol−1⋅s−1 for pH>−0.5, a result that is consistent with a Hammett analysis of the system

    QFT controller for nonlinear system application to 3-DOF flight control module

    No full text
    In this paper we proposed a new control method based on Quantitative Feedback Theory (QFT) to design practical controller methodology for uncertain characterized with three degree of freedom flight control module. Again linearly least phase systems must sacrifice to desirable feedback control benefits to avoid an excessive uncertain disturbance. While preserving the robust stability Quantitative Feedback Theory (QFT) controller is proposed to control highly uncertain plants. A 3-DOF flight control system is intrinsically nonlinear, unstable and totally uncertain because of the nature of three individual angles known as pitch, elevation and travel. Most controllers which are designed for 3-DOF helicopter flight systems are base on a minimal linearized model where system variants and uncertainties are not accommodated. Again, the controllers are mostly designed to gratify the gains and phase margin specifications that may not guarantee to handle the sensitivity. In proposed controller QFT may explicitly deal with uncertainty, where large plant parameter uncertainties with lower bandwidth can be achieved by QFT controller. Pre-filter technique may improve both robust stability and robust tracking performance within a desired precision of the individual uncertain parameters of 3-DOF module. This controller may handle large parameter uncertainties and disturbance with rugged stability. The random optimization technique is engaged in the design to optimize the overall performance of the controller. Simulation results and equations are used to show effective result of the proposed control methodology
    corecore