246 research outputs found

    Longitudinal investigation of prognostic communication: Feasibility and acceptability of studying serial disease reevaluation conversations in children with high-risk cancer

    Get PDF
    BACKGROUND: Prospective investigation of medical dialogue is considered the gold standard in prognostic communication research. To the authors' knowledge, the achievability of collecting mixed methods data across an evolving illness trajectory for children with cancer is unknown. METHODS: The objective of the current study was to investigate the feasibility and acceptability of recording sequential medical discussions at disease reevaluation time points for children with high‐risk cancer. Mixed methods data (ie, surveys, interviews, checklists, and chart reviews) corresponding to each disease reevaluation conversation also were captured in real‐time for 34 patients across 24 months at an academic pediatric cancer center. RESULTS: All eligible oncology clinicians (65 of 65 clinicians; 100%) and the majority of eligible patient/parent dyads (34 of 41 dyads; 82.9%) enrolled on the study; of 200 disease reevaluation discussions, 185 discussions (92.5%) were recorded, totaling >3300 minutes of recorded medical dialogue. Longitudinal data were captured for 31 of 34 patient/parent dyads (91.2%). The vast majority of study materials were completed, including 138 of 139 nonverbal communication checklists (99.3%), all 49 oncologist surveys (100%), 40 of 49 parent surveys (81.6%), all 34 oncologist interviews (100%), and 24 of 34 parent interviews (70.6%). Only 1 parent reported participation to be a “very” distressing experience, no parents believed that their level of distress warranted speaking with a psychosocial provider, and the majority of parents (18 of 29 parents; 62.1%) described study participation as “somewhat” or “very” useful to them. CONCLUSIONS: The prospective, longitudinal investigation of prognostic communication using a mixed methods approach appears to be feasible and acceptable to clinicians, patients, and families. The study of sensitive content can be accomplished without causing undue participant burden or harm, thereby enabling further advancement of communication research

    Habitat structure: a fundamental concept and framework for urban soil ecology

    Get PDF
    Habitat structure is defined as the composition and arrangement of physical matter at a location. Although habitat structure is the physical template underlying ecological patterns and processes, the concept is relatively unappreciated and underdeveloped in ecology. However, it provides a fundamental concept for urban ecology because human activities in urban ecosystems are often targeted toward management of habitat structure. In addition, the concept emphasizes the fine-scale, on-the-ground perspective needed in the study of urban soil ecology. To illustrate this, urban soil ecology research is summarized from the perspective of habitat structure effects. Among the key conclusions emerging from the literature review are: (1) habitat structure provides a unifying theme for multivariate research about urban soil ecology; (2) heterogeneous urban habitat structures influence soil ecological variables in different ways; (3) more research is needed to understand relationships among sociological variables, habitat structure patterns and urban soil ecology. To stimulate urban soil ecology research, a conceptual framework is presented to show the direct and indirect relationships among habitat structure and ecological variables. Because habitat structure serves as a physical link between sociocultural and ecological systems, it can be used as a focus for interdisciplinary and applied research (e.g., pest management) about the multiple, interactive effects of urbanization on the ecology of soils

    Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    Get PDF
    Background: Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings: This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Base

    Within-Host Dynamics of Multi-Species Infections: Facilitation, Competition and Virulence

    Get PDF
    Host individuals are often infected with more than one parasite species (parasites defined broadly, to include viruses and bacteria). Yet, research in infection biology is dominated by studies on single-parasite infections. A focus on single-parasite infections is justified if the interactions among parasites are additive, however increasing evidence points to non-additive interactions being the norm. Here we review this evidence and theoretically explore the implications of non-additive interactions between co-infecting parasites. We use classic Lotka-Volterra two-species competition equations to investigate the within-host dynamical consequences of various mixes of competition and facilitation between a pair of co-infecting species. We then consider the implications of these dynamics for the virulence (damage to host) of co-infections and consequent evolution of parasite strategies of exploitation. We find that whereas one-way facilitation poses some increased virulence risk, reciprocal facilitation presents a qualitatively distinct destabilization of within-host dynamics and the greatest risk of severe disease

    Peripheral nervous system manifestations in a Sandhoff disease mouse model: nerve conduction, myelin structure, lipid analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sandhoff disease is an inherited lysosomal storage disease caused by a mutation in the gene for the β-subunit (<it>Hexb </it>gene) of β-hexosaminidase A (αβ) and B (ββ). The β-subunit together with the GM2 activator protein catabolize ganglioside GM2. This enzyme deficiency results in GM2 accumulation primarily in the central nervous system. To investigate how abnormal GM2 catabolism affects the peripheral nervous system in a mouse model of Sandhoff disease (<it>Hexb-/-</it>), we examined the electrophysiology of dissected sciatic nerves, structure of central and peripheral myelin, and lipid composition of the peripheral nervous system.</p> <p>Results</p> <p>We detected no significant difference in signal impulse conduction velocity or any consistent change in the frequency-dependent conduction slowing and failure between freshly dissected sciatic nerves from the <it>Hexb</it>+/- and <it>Hexb</it>-/- mice. The low-angle x-ray diffraction patterns from freshly dissected sciatic and optic nerves of <it>Hexb</it>+/- and <it>Hexb</it>-/- mice showed normal myelin periods; however, <it>Hexb</it>-/- mice displayed a ~10% decrease in the relative amount of compact optic nerve myelin, which is consistent with the previously established reduction in myelin-enriched lipids (cerebrosides and sulfatides) in brains of <it>Hexb-/- </it>mice. Finally, analysis of lipid composition revealed that GM2 content was present in the sciatic nerve of the <it>Hexb</it>-/- mice (undetectable in <it>Hexb</it>+/-).</p> <p>Conclusion</p> <p>Our findings demonstrate the absence of significant functional, structural, or compositional abnormalities in the peripheral nervous system of the murine model for Sandhoff disease, but do show the potential value of integrating multiple techniques to evaluate myelin structure and function in nervous system disorders.</p

    The Spectacular Ultraviolet Flash from the Peculiar Type Ia Supernova 2019yvq

    Get PDF
    Early observations of Type Ia supernovae (SNe Ia) provide essential clues for understanding the progenitor system that gave rise to the terminal thermonuclear explosion. We present exquisite observations of SN 2019yvq, the second observed SN Ia, after iPTF 14atg, to display an early flash of emission in the ultraviolet (UV) and optical. Our analysis finds that SN 2019yvq was unusual, even when ignoring the initial flash, in that it was moderately underluminous for an SN Ia (Mg18.5{M}_{g}\approx -18.5 mag at peak) yet featured very high absorption velocities (v15,000v\approx 15{\rm{,0}}00 km s−1 for Si ii λ6355 at peak). We find that many of the observational features of SN 2019yvq, aside from the flash, can be explained if the explosive yield of radioactive 56Ni is relatively low (we measure M56Ni=0.31±0.05M{M}_{{56}_{\mathrm{Ni}}}=0.31\pm 0.05\,{M}_{\odot }) and it and other iron-group elements are concentrated in the innermost layers of the ejecta. To explain both the UV/optical flash and peak properties of SN 2019yvq we consider four different models: interaction between the SN ejecta and a nondegenerate companion, extended clumps of 56Ni in the outer ejecta, a double-detonation explosion, and the violent merger of two white dwarfs. Each of these models has shortcomings when compared to the observations; it is clear additional tuning is required to better match SN 2019yvq. In closing, we predict that the nebular spectra of SN 2019yvq will feature either H or He emission, if the ejecta collided with a companion, strong [Ca ii] emission, if it was a double detonation, or narrow [O i] emission, if it was due to a violent merger

    Deletion of transketolase triggers a stringent metabolic response in promastigotes and loss of virulence in amastigotes of Leishmania mexicana

    Get PDF
    Transketolase (TKT) is part of the non-oxidative branch of the pentose phosphate pathway (PPP). Here we describe the impact of removing this enzyme from the pathogenic protozoan Leishmania mexicana. Whereas the deletion had no obvious effect on cultured promastigote forms of the parasite, the Δtkt cells were not infective to mice. Δtkt promastigotes were more susceptible to oxidative stress and various leishmanicidal drugs than wild-type, and metabolomics analysis revealed profound changes to metabolism in these cells. In addition to changes consistent with those directly related to the role of TKT in the PPP, central carbon metabolism was substantially decreased, the cells consumed significantly less glucose, flux through glycolysis diminished, and production of the main end products of metabolism was decreased. Only minor changes in RNA abundance from genes encoding enzymes in central carbon metabolism, however, were detected although fructose-1,6-bisphosphate aldolase activity was decreased two-fold in the knock-out cell line. We also showed that the dual localisation of TKT between cytosol and glycosomes is determined by the C-terminus of the enzyme and by engineering different variants of the enzyme we could alter its sub-cellular localisation. However, no effect on the overall flux of glucose was noted irrespective of whether the enzyme was found uniquely in either compartment, or in both

    Beyond R0 : demographic models for variability of lifetime reproductive output

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 6 (2011): e20809, doi:10.1371/journal.pone.0020809.The net reproductive rate measures the expected lifetime reproductive output of an individual, and plays an important role in demography, ecology, evolution, and epidemiology. Well-established methods exist to calculate it from age- or stage-classified demographic data. As an expectation, provides no information on variability; empirical measurements of lifetime reproduction universally show high levels of variability, and often positive skewness among individuals. This is often interpreted as evidence of heterogeneity, and thus of an opportunity for natural selection. However, variability provides evidence of heterogeneity only if it exceeds the level of variability to be expected in a cohort of identical individuals all experiencing the same vital rates. Such comparisons require a way to calculate the statistics of lifetime reproduction from demographic data. Here, a new approach is presented, using the theory of Markov chains with rewards, obtaining all the moments of the distribution of lifetime reproduction. The approach applies to age- or stage-classified models, to constant, periodic, or stochastic environments, and to any kind of reproductive schedule. As examples, I analyze data from six empirical studies, of a variety of animal and plant taxa (nematodes, polychaetes, humans, and several species of perennial plants).Supported by National Science Foundation Grant DEB-0816514 and by a Research Award from the Alexander von Humboldt Foundation

    Genetic identification of cytomegaloviruses in a rural population of Côte d'Ivoire.

    Get PDF
    BACKGROUND: Cytomegaloviruses (CMVs) are herpesviruses that infect many mammalian species, including humans. Infection generally passes undetected, but the virus can cause serious disease in individuals with impaired immune function. Human CMV (HCMV) is circulating with high seroprevalence (60-100 %) on all continents. However, little information is available on HCMV genoprevalence and genetic diversity in subsaharan Africa, especially in rural areas of West Africa that are at high risk of human-to-human HCMV transmission. In addition, there is a potential for zoonotic spillover of pathogens through bushmeat hunting and handling in these areas as shown for various retroviruses. Although HCMV and nonhuman CMVs are regarded as species-specific, potential human infection with CMVs of non-human primate (NHP) origin, shown to circulate in the local NHP population, has not been studied. FINDINGS: Analysis of 657 human oral swabs and fecal samples collected from 518 individuals living in 8 villages of Côte d'Ivoire with generic PCR for identification of human and NHP CMVs revealed shedding of HCMV in 2.5 % of the individuals. Determination of glycoprotein B sequences showed identity with strains Towne, AD169 and Toledo, respectively. NHP CMV sequences were not detected. CONCLUSIONS: HCMV is actively circulating in a proportion of the rural Côte d'Ivoire human population with circulating strains being closely related to those previously identified in non-African countries. The lack of NHP CMVs in human populations in an environment conducive to cross-species infection supports zoonotic transmission of CMVs to humans being at most a rare event
    corecore