341 research outputs found
Number of averted COVID-19 cases and deaths attributable to reduced risk in vaccinated individuals in Japan
Background: In Japan, vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was initiated on 17 February 2021, mainly using messenger RNA vaccines and prioritizing health care professionals. Whereas nationwide vaccination alleviated the coronavirus disease 2019 (COVID-19)-related burden, the population impact has yet to be quantified in Japan. We aimed to estimate the numbers of COVID-19 cases and deaths prevented that were attributable to the reduced risk among vaccinated individuals via a statistical modeling framework. Methods: We analyzed confirmed cases registered in the Health Center Real-time Information-sharing System on COVID-19 (3 March–30 November 2021) and publicly reported COVID-19-related deaths (24 March–30 November 2021). The vaccination coverage over this time course, classified by age and sex, was extracted from vaccine registration systems. The total numbers of prevented cases and deaths were calculated by multiplying the daily risk differences between unvaccinated and vaccinated individuals by the population size of vaccinated individuals. Findings: For both cases and deaths, the averted numbers were estimated to be the highest among individuals aged 65 years and older. In total, we estimated that 564, 596 (95% confidence interval: 477, 020–657, 525) COVID-19 cases and 18, 622 (95% confidence interval: 6522–33, 762) deaths associated with SARS-CoV-2 infection were prevented owing to vaccination during the analysis period (i.e., fifth epidemic wave, caused mainly by the Delta variant). Female individuals were more likely to be protected from infection following vaccination than male individuals whereas more deaths were prevented in male than in female individuals. Interpretation: The vaccination program in Japan led to substantial reductions in the numbers of COVID-19 cases and deaths (33% and 67%, respectively). The preventive effect will be further amplified during future pandemic waves caused by variants with shared antigenicity. Funding: This project was supported by the Japan Science and Technology Agency; the Japan Agency for Medical Research and Development; the Japan Society for the Promotion of Science; and the Ministry of Health, Labour and Welfare
Pathophysiological Mechanisms In Gaseous Therapies For Severe Malaria
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high, at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patient clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO), and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate the host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.844874882HHS \ National Institutes of Health (NIH) [AI118302-02]MCTI \ Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Fabio Trindade Maranhao Costa [2012/16525-2]Fundacao de Amparo a Pesquisa do Estado do Rio de Janeiro (FAPERJ)Carvalho through a Cientista do Nosso Estado fellowshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP
Pathophysiological Mechanisms In Gaseous Therapies For Severe Malaria.
Over 200 million people worldwide suffer from malaria every year, a disease that causes 584,000 deaths annually. In recent years, significant improvements have been achieved on the treatment of severe malaria, with intravenous artesunate proving superior to quinine. However, mortality remains high at 8% in children and 15% in adults in clinical trials, and even worse in the case of cerebral malaria (18% and 30%, respectively). Moreover, some individuals who do not succumb to severe malaria present long-term cognitive deficits. These observations indicate that strategies focused only on parasite killing fail to prevent neurological complications and deaths associated with severe malaria, possibly because clinical complications are associated in part with a cerebrovascular dysfunction. Consequently, different adjunctive therapies aimed at modulating malaria pathophysiological processes are currently being tested. However, none of these therapies has shown unequivocal evidence in improving patients' clinical status. Recently, key studies have shown that gaseous therapies based mainly on nitric oxide (NO), carbon monoxide (CO) and hyperbaric (pressurized) oxygen (HBO) alter vascular endothelium dysfunction and modulate host immune response to infection. Considering gaseous administration as a promising adjunctive treatment against severe malaria cases, we review here the pathophysiological mechanisms and the immunological aspects of such therapies.8
Estimativa do potencial natural de erosão do solo para o Brasil em escala exploratória.
A atividade agropecuária se for conduzida sem as práticas de conservação do solo adequadas pode gerar grande perda de solo e de nutrientes de extensas áreas. Para se evitar esses processos pode-se, além da adoção de práticas conservacionistas, realizar a ordenação do uso da terra considerando o potencial natural de erosão. Com isso, objetivou-se estimar, em escala exploratória, a erosão potencial natural do solo para o território continental do Brasil. A estimativa foi realizada pela metodologia da RUSLE, obtendo valores de suscetibilidade do solo à erosão em revisão bibliográfica, calculando a erosividade da chuva utilizando dados espacializados de chuva mensal e estimando o fator LS utilizando o modelo digital de elevação SRTM com resolução espacial de 3 arco-segundos e considerando comprimento de rampa único em função da declividade do terreno. Os estados com maior média de potencial natural de erosão do solo são: Rio de Janeiro, Santa Catarina, Roraima, Espírito Santo e Minas Gerais. Em regiões com grande potencial natural de erosão, as atividades agrícolas, pecuárias e florestais devem adotar as práticas conservacionistas com maior atenção do que nas outras regiões de modo a se evitar a formação de grandes processos erosivos
Search for dinucleon decay into pions at Super-Kamiokande
A search for dinucleon decay into pions with the Super-Kamiokande detector
has been performed with an exposure of 282.1 kiloton-years. Dinucleon decay is
a process that violates baryon number by two units. We present the first search
for dinucleon decay to pions in a large water Cherenkov detector. The modes
O C, O
N, and O
O are investigated. No significant excess in the
Super-Kamiokande data has been found, so a lower limit on the lifetime of the
process per oxygen nucleus is determined. These limits are:
years,
years, and
years. The lower
limits on each mode are about two orders of magnitude better than previous
limits from searches for dinucleon decay in iron.Comment: 20 pages, 17 figures. Accepted for publication in Physical Review D
on March 30, 201
Recommended from our members
The uronic acid content of coccolith-associated polysaccharides provides insight into coccolithogenesis and past climate
Unicellular phytoplanktonic algae (coccolithophores) are among the most prolific producers of calcium carbonate on the planet, with a production of ∼1026 coccoliths per year. During their lith formation, coccolithophores mainly employ coccolith-associated polysaccharides (CAPs) for the regulation of crystal nucleation and growth. These macromolecules interact with the intracellular calcifying compartment (coccolith vesicle) through the charged carboxyl groups of their uronic acid residues. Here we report the isolation of CAPs from modern day coccolithophores and their prehistoric predecessors and we demonstrate that their uronic acid content (UAC) offers a species-specific signature. We also show that there is a correlation between the UAC of CAPs and the internal saturation state of the coccolith vesicle that, for most geologically abundant species, is inextricably linked to carbon availability. These findings suggest that the UAC of CAPs reports on the adaptation of coccolithogenesis to environmental changes and can be used for the estimation of past CO2 concentrations
Asymmetric nuclear motion of the F 1s–ionized state in BF3 probed by quadruple-ion-coincidence momentum imaging
Using the quadruple-ion-coincidence momentum imaging technique, we find that the momentum correlation of the four atomic ions departed from one BF34+ parent molecular ion produced via multiple Auger decay after F 1s ionization exhibits asymmetric fragmentation in which the B+ ion is ejected in the direction opposite to one of the F+ ions. This observation provides evidence of symmetry lowering, from D3h to C3v in the F 1s–ionized state
- …