10,080 research outputs found

    Simulation of intrinsic parameter fluctuations in decananometer and nanometer-scale MOSFETs

    Get PDF
    Intrinsic parameter fluctuations introduced by discreteness of charge and matter will play an increasingly important role when semiconductor devices are scaled to decananometer and nanometer dimensions in next-generation integrated circuits and systems. In this paper, we review the analytical and the numerical simulation techniques used to study and predict such intrinsic parameters fluctuations. We consider random discrete dopants, trapped charges, atomic-scale interface roughness, and line edge roughness as sources of intrinsic parameter fluctuations. The presented theoretical approach based on Green's functions is restricted to the case of random discrete charges. The numerical simulation approaches based on the drift diffusion approximation with density gradient quantum corrections covers all of the listed sources of fluctuations. The results show that the intrinsic fluctuations in conventional MOSFETs, and later in double gate architectures, will reach levels that will affect the yield and the functionality of the next generation analog and digital circuits unless appropriate changes to the design are made. The future challenges that have to be addressed in order to improve the accuracy and the predictive power of the intrinsic fluctuation simulations are also discussed

    Thermal QCD Sum Rules Study of Vector Charmonium and Bottomonium States

    Get PDF
    We calculate the masses and leptonic decay constants of the heavy vector quarkonia, J/ψJ/\psi and Υ\Upsilon mesons at finite temperature. In particular, considering the thermal spectral density as well as additional operators coming up at finite temperature, the thermal QCD sum rules are acquired. Our numerical calculations demonstrate that the masses and decay constants are insensitive to the variation of temperature up to T100 MeVT\cong 100 ~MeV, however after this point, they start to fall altering the temperature. At deconfinement temperature, the decay constants attain roughly to 45% of their vacuum values, while the masses are diminished about 12%, and 2.5% for J/ψJ/\psi and Υ\Upsilon states, respectively. The obtained results at zero temperature are in good consistency with the existing experimental data as well as predictions of the other nonperturbative models. Considerable decreasing in the values of the decay constants can be considered as a sign of the quark gluon plasma phase transition.Comment: 14 Pages, 8 Figures and 2 Table

    T and S dualities and The cosmological evolution of the dilaton and the scale factors

    Get PDF
    Cosmologically stabilizing radion along with the dilaton is one of the major concerns of low energy string theory. One can hope that T and S dualities can provide a plausible answer. In this work we study the impact of S and T duality invariances on dilaton gravity. We have shown various instances where physically interesting models arise as a result of imposing the mentioned invariances. In particular S duality has a very privileged effect in that the dilaton equations partially decouple from the evolution of the scale factors. This makes it easy to understand the general rules for the stabilization of the dilaton. We also show that certain T duality invariant actions become S duality invariance compatible. That is they mimic S duality when extra dimensions stabilize.Comment: Corrected a misleading interpretation of the S duality transformation and a wrong comment on d=10. I thank A.Kaya for pointing this out to me in time. So the new version is dealing with d=10 only. Added references and corrected some typos. Minor re-editing. Omitted a section for elaboration in a further study. Corrected further typo

    Modeling Phase-resolved Observations of the Surfaces of Magnetic Neutron Stars

    Full text link
    Recent observations by XMM-Newton detected rotational pulsations in the total brightness and spectrum of several neutron stars. To properly interpret the data, accurate modeling of neutron star emission is necessary. Detailed analysis of the shape and strength of the rotational variations allows a measurement of the surface composition and magnetic field, as well as constrains the nuclear equation of state. We discuss our models of the spectra and light curves of two of the most observed neutron stars, RX J1856.5-3754 and 1E 1207.4-5209, and discuss some implications of our results and the direction of future work.Comment: 5 pages, 6 figures; Proceedings of "40 Years of Pulsars", eds. C. Bassa, Z. Wang, A. Cumming, V. Kaspi, AIP, submitte

    Hydrodynamic Equation for the Breakdown of the Quantum Hall Effect in a Uniform Current

    Full text link
    The hydrodynamic equation for the spatial and temporal evolution of the electron temperature T_e in the breakdown of the quantum Hall effect at even-integer filling factors in a uniform current density j is derived from the Boltzmann-type equation, which takes into account electron-electron and electron-phonon scatterings. The derived equation has a drift term, which is proportional to j and to the first spatial derivative of T_e. Applied to the spatial evolution of T_e in a sample with an abrupt change of the width along the current direction, the equation gives a distinct dependence on the current direction as well as a critical relaxation, in agreement with the recent experiments.Comment: 4 pages, 1 Postscript figure, corrected equations, to be published in J. Phys. Soc. Jpn. 70 (2001) No.

    Indication of Non-equilibrium Transport in SiGe p-MOSFETs

    Get PDF
    No abstract avaliable

    5-Hydroxymethylcytosine Loss in Conjunctival Melanoma.

    Get PDF
    Conjunctival and cutaneous melanoma partially share similar clinical and molecular backgrounds. As 5-hydroxymethylcytosine (5-hmC) loss has been demonstrated in cutaneous melanoma, we decided to assess if similar changes were occurring in conjunctival melanoma. 5-methylcytosine (5-mC), 5-hmC and TET2 were respectively identified by immunohistochemistry and RNA ISH in 40 conjunctival nevi and 37 conjunctival melanomas. Clinicopathological correlations were established. 5-mC, TET2 and 5-hmC were respectively identified in 67.5%, 95% and 100% of conjunctival nevi and in 81.1%, 35.1% and 54% of conjunctival melanomas. A significant 5-hmC and TET2 loss was identified in conjunctival melanoma comparing to nevus, as well as a significant correlation between TET2 and 5-hmC expression. In the melanomas, 5-hmC expression was only significantly associated with local lymphatic invasion, but not with other clinicopathological parameters. There was a correlation between TET2 expression and the localization of the tumors. 5-mC expression was not associated with any clinicopathological parameters. We identified a significant 5-hmC loss in conjunctival melanoma similar to cutaneous melanoma. This loss may possibly be attributed to TET2 loss or IDH1 mutations. 5-hmC loss in conjunctival melanoma may help in the differential diagnosis between atypical conjunctival nevus and conjunctival melanoma

    Assessment of optic disc and ganglion cell layer in diabetes mellitus type 2

    Get PDF
    The purpose of this study was to compare the optic disc parameters, retinal nerve fiber (RNFL), and macular ganglion cell layers between patients with diabetes mellitus (DM) type 2 and healthy controls. In this cross-sectional study, 69 eyes of 69 diabetic patients without diabetic retinopathy and 47 eyes of 47 healthy controls were included. Optic disc parameters (i.e., rim area, disc area, cup to disc ratio, cup volume), RNFL, and macular ganglion cell-inner plexiform layers (GCL+IPL) thickness were measured by means of spectral domain optical coherence tomography. There were not statistically significant differences between the diabetic patients and healthy controls in terms of RNFL thickness (P=.32), rim area (P=.20), disc area (P=.16), cup volume (P=.12), and average macular GCL+IPL thickness (P=.11). Nevertheless, binocular RNFL thickness symmetry percentage (P=.03), average cup to disc ratio (P=.02), and superior-nasal macular GCL+IPL thickness (P=.04) were statistically significantly different in the diabetic and control groups. Diabetic patients without retinopathy have more binocular RNFL thickness asymmetry, higher cup to disc ratio, and thinner sectoral macular GCL+IPL when compared to healthy controls. Our results may support the statement that DM causes inner retinal neurodegenerative changes. © 2017 the Author(s). Published by Wolters Kluwer Health, Inc
    corecore