216 research outputs found

    Dynamic Thermal Analysis of a Power Amplifier

    Get PDF
    This paper presents dynamic thermal analyses of a power amplifier. All the investigations are based on the transient junction temperature measurements performed during the circuit cooling process. The presented results include the cooling curves, the structure functions, the thermal time constant distribution and the Nyquist plot of the thermal impedance. The experiments carried out demonstrated the influence of the contact resistance and the position of the entire cooling assembly on the obtained results.Comment: Submitted on behalf of TIMA Editions (http://irevues.inist.fr/tima-editions

    Role of anisotropy in the F\"orster energy transfer from a semiconductor quantum well to an organic crystalline overlayer

    Full text link
    We consider the non-radiative resonant energy transfer from a two-dimensional Wannier exciton (donor) to a Frenkel exciton of a molecular crystal overlayer (acceptor). We characterize the effect of the optical anisotropy of the organic subsystem on this process. Using realistic values of material parameters, we show that it is possible to change the transfer rate within typically a factor of two depending on the orientation of the crystalline overlayer. The resonant matching of donor and acceptor energies is also partly tunable via the organic crystal orientation.Comment: 6 pages, 8 figure

    The White Dwarfs within 20 Parsecs of the Sun: Kinematics and Statistics

    Get PDF
    We present the kinematical properties, distribution of spectroscopic subtypes, stellar population subcomponents of the white dwarfs within 20 pc of the sun. We find no convincing evidence of halo white dwarfs in the total 20 pc sample of 129 white dwarfs nor is there convincing evidence of genuine thick disk subcomponent members within 20 parsecs. Virtually the entire 20 pc sample likely belongs to the thin disk. The total DA to non-DA ratio of the 20 pc sample is 1.6, a manifestation of deepening envelope convection which transforms DA stars with sufficiently thin H surface layers into non-DAs. The addition of 5 new stars to the 20 pc sample yields a revised local space density of white dwarfs of 4.9±0.5×10−34.9\pm0.5 \times 10^{-3} M_{\sun}/yr and a corresponding mass density of 3.3±0.3×10−33.3\pm0.3 \times 10^{-3} M_{\sun}/pc3^{3}. We find that at least 15% of the white dwarfs within 20 parsecs of the sun (the DAZ and DZ stars) have photospheric metals that possibly originate from accretion of circumstellar material (debris disks) around them. If this interpretation is correct, this suggests the possibility that the same percentage have planets or asteroid-like bodies orbiting them.Comment: Accepted for publication in The Astronomical Journa

    LP 400-22, A very low-mass and high-velocity white dwarf

    Get PDF
    We report the identification of LP 400-22 (WD 2234+222) as a very low-mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11080+/-140 K and a surface gravity of log g = 6.32+/-0.08. Therefore, this is a helium core white dwarf with a mass of 0.17 M_solar. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.Comment: accepted for publication in ApJ Letters, made minor correction

    LP133-373 A New Chromospherically Active Eclipsing dMe Binary with a Distant, Cool White Dwarf Companion

    Get PDF
    We report the discovery of the partially eclipsing binary LP 133-373. Nearly identical eclipses along with observed photometric colors and spectroscopy indicate that it is a pair of chromospherically active dM4 stars in a circular 1.6 day orbit. Light and velocity curve modeling to our differential photometry and velocity data show that each star has a mass and radius of 0.340 ± 0.014 M☉ and 0.33 ± 0.02 R☉. The binary is itself part of a common proper motion pair with LP 133-374, a cool DC or possible DA white dwarf with a mass of 0.49-0.82 M☉, which would make the system at least 3 Gyr old

    Infrared Signatures of Disrupted Minor Planets at White Dwarfs

    Full text link
    Spitzer Space Observatory IRAC and MIPS photometric observations are presented for 20 white dwarfs with T < 20,000 K and metal-contaminated photospheres. A warm circumstellar disk is detected at GD 16 and likely at PG 1457-086, while the remaining targets fail to reveal mid-infrared excess typical of dust disks, including a number of heavily polluted stars. Extending previous studies, over 50% of all single white dwarfs with implied metal accretion rates dM/dt > 3e8 g/s display a warm infrared excess from orbiting dust; the likely result of a tidally-destroyed minor planet. This benchmark accretion rate lies between the dust production rates of 1e6 g/s in the solar system zodiacal cloud and 1e10 g/s often inferred for debris disks at main sequence A-type stars. It is estimated that between 1% and 3% of all single white dwarfs with cooling ages less than around 0.5 Gyr possess circumstellar dust, signifying an underlying population of minor planets.Comment: 47 pages, accepted to Ap

    LP 133-373: A New Chromospherically Active Eclipsing dMe Binary with a Distant, Cool White Dwarf Companion

    Get PDF
    We report the discovery of the partially eclipsing binary LP 133-373. Nearly identical eclipses along with observed photometric colors and spectroscopy indicate that it is a pair of chromospherically active dM4 stars in a circular 1.6 day orbit. Light and velocity curve modeling to our differential photometry and velocity data show that each star has a mass and radius of 0.340+/-0.014 Msolar and 0.33+/-0.02 Rsolar. The binary is itself part of a common proper motion pair with LP 133-374, a cool DC or possible DA white dwarf with a mass of 0.49-0.82 Msolar, which would make the system at least 3 Gyr ol

    Understanding the rotational variability of K2 targets. HgMn star KIC 250152017 and blue horizontal branch star KIC 249660366

    Full text link
    Ultraprecise space photometry enables us to reveal light variability even in stars that were previously deemed constant. A large group of such stars show variations that may be rotationally modulated. This type of light variability is of special interest because it provides precise estimates of rotational rates. We aim to understand the origin of the light variability of K2 targets that show signatures of rotational modulation. We used phase-resolved medium-resolution XSHOOTER spectroscopy to understand the light variability of the stars KIC~250152017 and KIC~249660366, which are possibly rotationally modulated. We determined the atmospheric parameters at individual phases and tested the presence of the rotational modulation in the spectra. KIC 250152017 is a HgMn star, whose light variability is caused by the inhomogeneous surface distribution of manganese and iron. It is only the second HgMn star whose light variability is well understood. KIC 249660366 is a He-weak, high-velocity horizontal branch star with overabundances of silicon and argon. The light variability of this star is likely caused by a reflection effect in this post-common envelope binary.Comment: 8 pages, accepted for publication in Astronomy & Astrophysic

    Casimir forces from a loop integral formulation

    Full text link
    We reformulate the Casimir force in the presence of a non-trivial background. The force may be written in terms of loop variables, the loop being a curve around the scattering sites. A natural path ordering of exponentials take place when a particular representation of the scattering centres is given. The basic object to be evaluated is a reduced (or abbreviated) classical pseudo-action that can be operator valued.Comment: references added, text clarified in place
    • …
    corecore