26 research outputs found

    L type Ca2+ channel blockers prevent oxaliplatin-induced cold hyperalgesia and TRPM8 overexpression in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxaliplatin is an important drug used in the treatment of colorectal cancer. However, it frequently causes severe acute and chronic peripheral neuropathies. We recently reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats, and that oxalate derived from oxaliplatin is involved in the cold hyperalgesia. In the present study, we examined the effects of Ca<sup>2+ </sup>channel blockers on oxaliplatin-induced cold hyperalgesia in rats.</p> <p>Methods</p> <p>Cold hyperalgesia was assessed by the acetone test. Oxaliplatin (4 mg/kg), sodium oxalate (1.3 mg/kg) or vehicle was injected i.p. on days 1 and 2. Ca<sup>2+ </sup>(diltiazem, nifedipine and ethosuximide) and Na<sup>+ </sup>(mexiletine) channel blockers were administered p.o. simultaneously with oxaliplatin or oxalate on days 1 and 2.</p> <p>Results</p> <p>Oxaliplatin (4 mg/kg) induced cold hyperalgesia and increased in the transient receptor potential melastatin 8 (TRPM8) mRNA levels in the dorsal root ganglia (DRG). Furthermore, oxalate (1.3 mg/kg) significantly induced the increase in TRPM8 protein in the DRG. Treatment with oxaliplatin and oxalate (500 μM for each) also increased the TRPM8 mRNA levels and induced Ca<sup>2+ </sup>influx and nuclear factor of activated T-cell (NFAT) nuclear translocation in cultured DRG cells. These changes induced by oxalate were inhibited by nifedipine, diltiazem and mexiletine. Interestingly, co-administration with nifedipine, diltiazem or mexiletine prevented the oxaliplatin-induced cold hyperalgesia and increase in the TRPM8 mRNA levels in the DRG.</p> <p>Conclusions</p> <p>These data suggest that the L type Ca<sup>2+ </sup>channels/NFAT/TRPM8 pathway is a downstream mediator for oxaliplatin-induced cold hyperalgesia, and that Ca<sup>2+ </sup>channel blockers have prophylactic potential for acute neuropathy.</p

    Inhibition of Ca2+/Calmodulin-dependent protein kinase II reverses oxaliplatin-induced mechanical allodynia in Rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxaliplatin is a key drug in the treatment of colorectal cancer, but it causes severe peripheral neuropathy. We previously reported that oxaliplatin (4 mg/kg, i.p., twice a week) induces mechanical allodynia in the late phase in rats, and that spinal NR2B-containig <it>N</it>-methyl-<sub>D</sub>-aspartate (NMDA) receptors are involved in the oxaliplatin-induced mechanical allodynia. In the present study, we investigated the involvement of Ca<sup>2+</sup>/calmodulin dependent protein kinase II (CaMKII), which is a major intracellular protein kinase and is activated by NMDA receptor-mediated Ca<sup>2+ </sup>influx, in the oxaliplatin-induced mechanical allodynia in rats.</p> <p>Results</p> <p>An increase of CaMKII phosphorylation was found in the spinal cord (L<sub>4-6</sub>) of oxaliplatin-treated rats. This increased CaMKII phosphorylation was reversed by intrathecal injection of a selective CaMKII inhibitor KN-93 (50 nmol, i.t.) and a selective NR2B antagonist Ro 25-6981 (300 nmol, i.t.). Moreover, acute administration of KN-93 (50 nmol, i.t.) strongly reversed the oxaliplatin-induced mechanical allodynia in von Frey test, while it did not affect the oxaliplatin-induced cold hyperalgesia in acetone test. Similarly, oral administration of trifluoperazine (0.1 and 0.3 mg/kg, p.o.), which is an antipsychotic drug and inhibits calmodulin, reduced both mechanical allodynia and increased CaMKII phosphorylation. On the other hand, trifluoperazine at the effective dose (0.3 mg/kg) had no effect on the paw withdrawal threshold in intact rats. In addition, trifluoperazine at the same dose did not affect the motor coordination in rota-rod test in intact and oxaliplatin-treated rats.</p> <p>Conclusions</p> <p>These results suggest that CaMKII is involved in the oxaliplatin-induced mechanical allodynia, and trifluoperazine may be useful for the treatment of oxaliplatin-induced peripheral neuropathy in clinical setting.</p

    Identification of prophylactic drugs for oxaliplatin-induced peripheral neuropathy using big data

    Get PDF
    Background: Drug repositioning is a cost-effective method to identify novel disease indications for approved drugs; it requires a shorter developmental period than conventional drug discovery methods. We aimed to identify prophylactic drugs for oxaliplatin-induced peripheral neuropathy by drug repositioning using data from large-scale medical information and life science information databases. Methods: Herein, we analyzed the reported data between 2007 and 2017 retrieved from the FDA’s database of spontaneous adverse event reports (FAERS) and the LINCS database provided by the National Institute of Health. The efficacy of the drug candidates for oxaliplatin-induced peripheral neuropathy obtained from the database analysis was examined using a rat model of peripheral neuropathy. Additionally, we compared the incidence of peripheral neuropathy in patients who received oxaliplatin at the Tokushima University Hospital, Japan. The effects of statins on the animal model were examined in six-week-old male Sprague–Dawley rats and seven or eight-week-old male BALB/C mice. Retrospective medical chart review included clinical data from Tokushima University Hospital from April 2009 to March 2018. Results: Simvastatin, indicated for dyslipidemia, significantly reduced the severity of peripheral neuropathy and oxaliplatin-induced hyperalgesia. In the nerve tissue of model rats, the mRNA expression of Gstm1 increased with statin administration. A retrospective medical chart review using clinical data revealed that the incidence of peripheral neuropathy decreased with statin use. Conclusion and relevance: Thus, drug repositioning using data from large-scale basic and clinical databases enables the discovery of new indications for approved drugs with a high probability of success

    抗がん薬による末梢神経障害の回避を目指した新たなアプローチ

    No full text

    Dimethyl fumarate ameliorates chemotherapy agent-induced neurotoxicity in vitro

    No full text
    Chemotherapy agents such as oxaliplatin, cisplatin, paclitaxel, and bortezomib frequently cause severe peripheral neuropathy and there is currently no effective strategy to prevent this. Dimethyl fumarate (DMF) is a new oral drug for the treatment of multiple sclerosis, and has neuroprotective effects via up-regulation of the nuclear factor-erythroid-2-related factor 2 (Nrf2)-dependent antioxidant response. In this study, we investigated the effect of DMF on chemotherapy agent-induced neurodegenerations in cultured cells. We found that DMF and its metabolite monomethyl fumarate (MMF) attenuated oxaliplatin-, cisplatin-, and bortezomib- (but not paclitaxel-) induced inhibition of neurite outgrowth, but had no effect on cell death as a result of these agents in cultured PC12 cells and primary cultured rat dorsal root ganglion (DRG) neurons. Furthermore, Nrf2 DNA binding activity was increased by DMF and MMF in PC12 cells. These findings suggest that DMF, which activates Nrf2 pathway, has a potential protective action against chemotherapy-induced neurotoxicity, particularly neurite impairments. Keywords: Dimethyl fumarate, Neurotoxicity, Oxaliplatin, Chemotherapy agents, Nuclear factor-erythroid-2-related factor 2 (Nrf2

    Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence

    No full text
    Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research

    Therapeutic Agents for Oxaliplatin-Induced Peripheral Neuropathy; Experimental and Clinical Evidence

    No full text
    Oxaliplatin is an essential drug in the chemotherapy of colorectal, gastric, and pancreatic cancers, but it frequently causes peripheral neuropathy as a dose-limiting factor. So far, animal models of oxaliplatin-induced peripheral neuropathy have been established. The mechanisms of development of neuropathy induced by oxaliplatin have been elucidated, and many drugs and agents have been proven to have neuroprotective effects in basic studies. In addition, some of these drugs have been validated in clinical studies for their inhibitory effects on neuropathy. In this review, we summarize the basic and clinical evidence for the therapeutic effects of oxaliplatin. In basic research, there are many reports of neuropathy inhibitors that target oxidative stress, inflammatory response, sodium channel, transient receptor potential (TRP) channel, glutamate nervous system, and monoamine nervous system. Alternatively, very few drugs have clearly demonstrated the efficacy for oxaliplatin-induced peripheral neuropathy in clinical trials. It is important to activate translational research in order to translate basic research into clinical research
    corecore