387 research outputs found

    Recrudescence of massive fermion production by oscillons

    Get PDF
    We bring together the physics of preheating, following a period of inflation, and the dynamics of non-topological solitons, namely oscillons. We show that the oscillating condensate that makes up an oscillon can be an efficient engine for producing heavy fermions, just as a homogeneous condensate is known for doing the same. This then allows heavy fermions to be produced when the energy scale of the Universe has dropped below the scale naturally associated to the fermions

    Target Cell Cyclophilins Facilitate Human Papillomavirus Type 16 Infection

    Get PDF
    Following attachment to primary receptor heparan sulfate proteoglycans (HSPG), human papillomavirus type 16 (HPV16) particles undergo conformational changes affecting the major and minor capsid proteins, L1 and L2, respectively. This results in exposure of the L2 N-terminus, transfer to uptake receptors, and infectious internalization. Here, we report that target cell cyclophilins, peptidyl-prolyl cis/trans isomerases, are required for efficient HPV16 infection. Cell surface cyclophilin B (CyPB) facilitates conformational changes in capsid proteins, resulting in exposure of the L2 N-terminus. Inhibition of CyPB blocked HPV16 infection by inducing noninfectious internalization. Mutation of a putative CyP binding site present in HPV16 L2 yielded exposed L2 N-terminus in the absence of active CyP and bypassed the need for cell surface CyPB. However, this mutant was still sensitive to CyP inhibition and required CyP for completion of infection, probably after internalization. Taken together, these data suggest that CyP is required during two distinct steps of HPV16 infection. Identification of cell surface CyPB will facilitate the study of the complex events preceding internalization and adds a putative drug target for prevention of HPV–induced diseases

    CD44+CD24− prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis

    Get PDF
    Recent evidence supports the hypothesis that cancer stem cells are responsible for tumour initiation and formation. Using flow cytometry, we isolated a population of CD44+CD24− prostate cells that display stem cell characteristics as well as gene expression patterns that predict overall survival in prostate cancer patients. CD44+CD24− cells form colonies in soft agar and form tumours in NOD/SCID mice when as few as 100 cells are injected. Furthermore, CD44+CD24− cells express genes known to be important in stem cell maintenance, such as BMI-1 and Oct-3/4. Moreover, we can maintain CD44+CD24− prostate stem-like cells as nonadherent spheres in serum-replacement media without substantially shifting gene expression. Addition of serum results in adherence to plastic and shifts gene expression patterns to resemble the differentiated parental cells. Thus, we propose that CD44+CD24− prostate cells are stem-like cells responsible for tumour initiation and we provide a genomic definition of these cells and the differentiated cells they give rise to. Furthermore, gene expression patterns of CD44+CD24− cells have a genomic signature that is predictive of poor patient prognosis. Therefore, CD44+CD24− LNCaP prostate cells offer an attractive model system to both explore the biology important to the maintenance and differentiation of prostate cancer stem cells as well as to develop the therapeutics, as the gene expression pattern in these cells is consistent with poor survival in prostate cancer patients

    The Forkhead Transcription Factor Foxi1 Is a Master Regulator of Vacuolar H+-ATPase Proton Pump Subunits in the Inner Ear, Kidney and Epididymis

    Get PDF
    The vacuolar H+-ATPase dependent transport of protons across cytoplasmic membranes in FORE (forkhead related) cells of endolymphatic epithelium in the inner ear, intercalated cells of collecting ducts in the kidney and in narrow and clear cells of epididymis require expression of several subunits that assemble into a functional multimeric proton pump. We demonstrate that expression of four such subunits A1, B1, E2 and a4 all co-localize with the forkhead transcription factor Foxi1 in a subset of epithelial cells at these three locations. In cells, of such epithelia, that lack Foxi1 we fail to identify any expression of A1, B1, E2 and a4 demonstrating an important role for the transcription factor Foxi1 in regulating subunit availability. Promoter reporter experiments, electrophoretic mobility shift assays (EMSA) and site directed mutagenesis demonstrate that a Foxi1 expression vector can trans-activate an a4-promoter reporter construct in a dose dependent manner. Furthermore, we demonstrate using chromatin immunoprecipitation (ChIP) assays that Foxi1-dependent activation to a large extent depends on cis-elements at position −561/−547 in the a4 promoter. Thus, we provide evidence that Foxi1 is necessary for expression of at least four subunits in three different epithelia and most likely is a major determinant for proper assembly of a functional vacuolar H+-ATPase complex at these locations

    Structural Analysis of a Repetitive Protein Sequence Motif in Strepsirrhine Primate Amelogenin

    Get PDF
    Strepsirrhines are members of a primate suborder that has a distinctive set of features associated with the development of the dentition. Amelogenin (AMEL), the better known of the enamel matrix proteins, forms 90% of the secreted organic matrix during amelogenesis. Although AMEL has been sequenced in numerous mammalian lineages, the only reported strepsirrhine AMEL sequences are those of the ring-tailed lemur and galago, which contain a set of additional proline-rich tandem repeats absent in all other primates species analyzed to date, but present in some non-primate mammals. Here, we first determined that these repeats are present in AMEL from three additional lemur species and thus are likely to be widespread throughout this group. To evaluate the functional relevance of these repeats in strepsirrhines, we engineered a mutated murine amelogenin sequence containing a similar proline-rich sequence to that of Lemur catta. In the monomeric form, the MQP insertions had no influence on the secondary structure or refolding properties, whereas in the assembled form, the insertions increased the hydrodynamic radii. We speculate that increased AMEL nanosphere size may influence enamel formation in strepsirrhine primates

    Emergent Rank-5 'Nematic' Order in URu2Si2

    Full text link
    Novel electronic states resulting from entangled spin and orbital degrees of freedom are hallmarks of strongly correlated f-electron systems. A spectacular example is the so-called 'hidden-order' phase transition in the heavy-electron metal URu2Si2, which is characterized by the huge amount of entropy lost at T_{HO}=17.5K. However, no evidence of magnetic/structural phase transition has been found below T_{HO} so far. The origin of the hidden-order phase transition has been a long-standing mystery in condensed matter physics. Here, based on a first-principles theoretical approach, we examine the complete set of multipole correlations allowed in this material. The results uncover that the hidden-order parameter is a rank-5 multipole (dotriacontapole) order with 'nematic' E^- symmetry, which exhibits staggered pseudospin moments along the [110] direction. This naturally provides comprehensive explanations of all key features in the hidden-order phase including anisotropic magnetic excitations, nearly degenerate antiferromagnetic-ordered state, and spontaneous rotational-symmetry breaking.Comment: See the published version with more detailed discussion

    Regulation of the V-ATPase along the Endocytic Pathway Occurs through Reversible Subunit Association and Membrane Localization

    Get PDF
    The lumen of endosomal organelles becomes increasingly acidic when going from the cell surface to lysosomes. Luminal pH thereby regulates important processes such as the release of internalized ligands from their receptor or the activation of lysosomal enzymes. The main player in endosomal acidification is the vacuolar ATPase (V-ATPase), a multi-subunit transmembrane complex that pumps protons from the cytoplasm to the lumen of organelles, or to the outside of the cell. The active V-ATPase is composed of two multi-subunit domains, the transmembrane V0 and the cytoplasmic V1. Here we found that the ratio of membrane associated V1/Vo varies along the endocytic pathway, the relative abundance of V1 being higher on late endosomes than on early endosomes, providing an explanation for the higher acidity of late endosomes. We also found that all membrane-bound V-ATPase subunits were associated with detergent resistant membranes (DRM) isolated from late endosomes, raising the possibility that association with lipid-raft like domains also plays a role in regulating the activity of the proton pump. In support of this, we found that treatment of cells with U18666A, a drug that leads to the accumulation of cholesterol in late endosomes, affected acidification of late endosome. Altogether our findings indicate that the activity of the vATPase in the endocytic pathway is regulated both by reversible association/dissociation and the interaction with specific lipid environments

    Discovery of Molecular Markers to Discriminate Corneal Endothelial Cells in the Human Body

    Get PDF
    The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro

    Cerebrospinal fluid sodium rhythms

    Get PDF
    Background: Cerebrospinal fluid (CSF) sodium levels have been reported to rise during episodic migraine. Since migraine frequently starts in early morning or late afternoon, we hypothesized that natural sodium chronobiology may predispose susceptible persons when extracellular CSF sodium increases. Since no mammalian brain sodium rhythms are known, we designed a study of healthy humans to test if cation rhythms exist in CSF. Methods: Lumbar CSF was collected every ten minutes at 0.1 mL/min for 24 h from six healthy participants. CSF sodium and potassium concentrations were measured by ion chromatography, total protein by fluorescent spectrometry, and osmolarity by freezing point depression. We analyzed cation and protein distributions over the 24 h period and spectral and permutation tests to identify significant rhythms. We applied the False Discovery Rate method to adjust significance levels for multiple tests and Spearman correlations to compare sodium fluctuations with potassium, protein, and osmolarity. Results: The distribution of sodium varied much more than potassium, and there were statistically significant rhythms at 12 and 1.65 h periods. Curve fitting to the average time course of the mean sodium of all six subjects revealed the lowest sodium levels at 03.20 h and highest at 08.00 h, a second nadir at 09.50 h and a second peak at 18.10 h. Sodium levels were not correlated with potassium or protein concentration, or with osmolarity. Conclusion: These CSF rhythms are the first reports of sodium chronobiology in the human nervous system. The results are consistent with our hypothesis that rising levels of extracellular sodium may contribute to the timing of migraine onset. The physiological importance of sodium in the nervous system suggests that these rhythms may have additional repercussions on ultradian functions
    corecore