97 research outputs found

    Zero- and Few-shot Sound Event Localization and Detection

    Full text link
    Sound event localization and detection (SELD) systems estimate direction-of-arrival (DOA) and temporal activation for sets of target classes. Neural network (NN)-based SELD systems have performed well in various sets of target classes, but they only output the DOA and temporal activation of preset classes that are trained before inference. To customize target classes after training, we tackle zero- and few-shot SELD tasks, in which we set new classes with a text sample or a few audio samples. While zero-shot sound classification tasks are achievable by embedding from contrastive language-audio pretraining (CLAP), zero-shot SELD tasks require assigning an activity and a DOA to each embedding, especially in overlapping cases. To tackle the assignment problem in overlapping cases, we propose an embed-ACCDOA model, which is trained to output track-wise CLAP embedding and corresponding activity-coupled Cartesian direction-of-arrival (ACCDOA). In our experimental evaluations on zero- and few-shot SELD tasks, the embed-ACCDOA model showed a better location-dependent scores than a straightforward combination of the CLAP audio encoder and a DOA estimation model. Moreover, the proposed combination of the embed-ACCDOA model and CLAP audio encoder with zero- or few-shot samples performed comparably to an official baseline system trained with complete train data in an evaluation dataset.Comment: 5 pages, 4 figure

    Multi-Cast Key Distribution: Scalable, Dynamic and Provably Secure Construction

    Get PDF
    In this paper, we propose a two-round dynamic multi-cast key distribution (DMKD) protocol under the star topology with a central authentication server. Users can share a common session key without revealing any information of the session key to the server, and can join/leave to/from the group at any time even after establishing the session key. Our protocol is scalable because communication and computation costs of each user are independent from the number of users. Also, our protocol is still secure if either private key or session-specific randomness of a user is exposed. Furthermore, time-based backward secrecy is guaranteed by renewing the session key for every time period even if the session key is exposed. We introduce the first formal security definition for DMKD under the star topology in order to capture such strong exposure resilience and time-based backward secrecy. We prove that our protocol is secure in our security model in the standard model

    Cloning, expression, crystallization and preliminary X-ray crystallographic analysis of a human condensin SMC2 hinge domain with short coiled coils

    Full text link
    Kawahara, K., Nakamura, S., Katsu, Y., Motooka, D., Hosokawa, Y., Kojima, Y., Matsukawa, K., Takinowaki, H., Uchiyama, S., Kobayashi, Y., Fukui, K. & Ohkubo, T. (2010). Acta Cryst. F66, 1067-1070

    Structural and functional insights into thermally stable cytochrome c' from a thermophile

    Get PDF
    Thermophilic Hydrogenophilus thermoluteolus cytochrome c0 (PHCP) exhibits higher thermal stability than a mesophilic counterpart, Allochromatium vinosum cytochrome c0 (AVCP), which has a homo-dimeric structure and ligand-binding ability. To understand the thermal stability mechanism and ligand-binding ability of the thermally stable PHCP protein, the crystal structure of PHCP was first determined. It formed a homo-dimeric structure, the main chain root mean square deviation (rmsd) value between PHCP and AVCP being 0.65 A ° . In the PHCP structure, six specific residues appeared to strengthen the heme-related and subunit–subunit interactions, which were not conserved in the AVCP structure. PHCP variants having altered subunit–subunit interactions were more severely destabilized than ones having altered heme-related interactions. The PHCP structure further revealed a ligand-binding channel and a penta-coordinated heme, as observed in the AVCP protein. A spectroscopic study clearly showed that some ligands were bound to the PHCP protein. It is concluded that the dimeric PHCP from the thermophile is effectively stabilized through heme-related and subunit–subunit interactions with conservation of the ligand-binding ability.This work was performed under the Cooperative Research Program of the “Network Joint Research Center for Materials and Devices”

    Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds

    Get PDF
    Harada, S., Hiromori, Y., Nakamura, S. et al. Structural basis for PPARγ transactivation by endocrine-disrupting organotin compounds. Sci Rep 5, 8520 (2015). https://doi.org/10.1038/srep08520

    Structural basis for dimer formation of human condensin structural maintenance of chromosome proteins and its implications for single-stranded DNA recognition

    Get PDF
    Eukaryotic structural maintenance of chromosome proteins (SMC) are major components of cohesin and condensins that regulate chromosome structure and dynamics during cell cycle. We here determine the crystal structure of human condensin SMC hinge heterodimer with ∼30 residues of coiled coils. The structure, in conjunction with the hydrogen exchange mass spectrometry analyses, revealed the structural basis for the specific heterodimer formation of eukaryotic SMC and that the coiled coils from two different hinges protrude in the same direction, providing a unique binding surface conducive for binding to single-stranded DNA. The characteristic hydrogen exchange profiles of peptides constituted regions especially across the hinge-hinge dimerization interface, further suggesting the structural alterations upon single-stranded DNA binding and the presence of a half-opened state of hinge heterodimer. This structural change potentially relates to the DNA loading mechanism of SMC, in which the hinge domain functions as an entrance gate as previously proposed for cohesin. Our results, however, indicated that this is not the case for condensins based on the fact that the coiled coils are still interacting with each other, even when DNA binding induces structural changes in the hinge region, suggesting the functional differences of SMC hinge domain between condensins and cohesin in DNA recognition.Susumu Uchiyama, Kazuki Kawahara, Yuki Hosokawa, Shunsuke Fukakusa, Hiroya Oki, Shota Nakamura, Yukiko Kojima, Masanori Noda, Rie Takino, Yuya Miyahara, Takahiro Maruno, Yuji Kobayashi, Tadayasu Ohkubo, Kiichi Fukui. Structural Basis for Dimer Formation of Human Condensin Structural Maintenance of Chromosome Proteins and Its Implications for Single-stranded DNA Recognition. Journal of Biological Chemistry, Volume 290, Issue 49, 2015, Pages 29461-29477. https://doi.org/10.1074/jbc.M115.670794

    Phospholipase Cbeta4 and protein kinase Calpha and/or protein kinase CbetaI are involved in the induction of long term depression in cerebellar Purkinje cells.

    Get PDF
    Activation of the type-1 metabotropic glutamate receptor (mGluR1) signaling pathway in the cerebellum involves activation of phospholipase C (PLC) and protein kinase C (PKC) for the induction of cerebellar long term depression (LTD). The PLC and PKC isoforms that are involved in LTD remain unclear, however. One previous study found no change in LTD in PKCgamma-deficient mice, thus, in the present study, we examined cerebellar LTD in PLCbeta4-deficient mice. Immunohistochemical and Western blot analyses of cerebellum from wild-type mice revealed that PLCbeta1 was expressed weakly and uniformly, PLCbeta2 was not detected, PLCbeta3 was expressed predominantly in caudal cerebellum (lobes 7-10), and PLCbeta4 was expressed uniformly throughout. In PLCbeta4-deficient mice, expression of total PLCbeta, the mGluR1-mediated Ca(2+) response, and LTD induction were greatly reduced in rostral cerebellum (lobes 1-6). Furthermore, we used immunohistochemistry to localize PKCalpha, -betaI, -betaII, and -gamma in mouse cerebellar Purkinje cells during LTD induction. Both PKCalpha and PKCbetaI were found to be translocated to the plasmamembrane under these conditions. Taken together, these results suggest that mGluR1-mediated activation of PLCbeta4 in rostral cerebellar Purkinje cells induced LTD via PKCalpha and/or PKCbetaI

    De novo formed satellite DNA-based mammalian artificial chromosomes and their possible applications

    Full text link
    corecore