20 research outputs found

    A chemistry-transport model simulation of middle atmospheric ozone from 1980 to 2019 using coupled chemistry GCM winds and temperatures

    No full text
    International audienceA Global 40-year simulation from 1980 to 2019 was performed with the FinROSE chemistry-transport model based on the use of coupled chemistry GCM-data. The main focus of our analysis is on climatological-scale processes in high latitudes. The resulting trend estimates for the past period (1980?1999) agree well with observation-based trend estimates. The results for the future period (2000?2019) suggest that the extent of seasonal ozone depletion over both northern and southern high-latitudes has likely reached its maximum. Furthermore, while climate change is expected to cool the stratosphere, this cooling is unlikely to accelerate significantly high latitude ozone depletion. However, the recovery of seasonal high latitude ozone losses will not take place during the next 15 years

    Quality assurance of the Brewer UV measurements in Finland

    No full text
    International audienceThe quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and included in the data processing software. The results showed that the actual cosine correction factor of the Finnish Brewers can vary between 1.08?1.13 and 1.08?1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long term spectral responsivity was calculated using time series of several lamps using two slightly different methods. The long term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole measurement time periods 1990?2006 and 1995?2006 for Sodankylä and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002?2007

    Quality assurance of the Brewer spectral UV measurements in Finland

    Get PDF
    The quality assurance of the two Brewer spectrophotometers of the Finnish Meteorological Institute is discussed in this paper. The complete data processing chain from raw signal to high quality spectra is presented. The quality assurance includes daily maintenance, laboratory characterizations, calculation of long-term spectral responsivity, data processing and quality assessment. The cosine correction of the measurements is based on a new method, and is included in the data processing software. The results showed that the actual cosine correction factor of the two Finnish Brewers can vary between 1.08–1.13 and 1.08–1.12, respectively, depending on the sky radiance distribution and wavelength. The temperature characterization showed a linear temperature dependence between the instruments' internal temperature and the photon counts per cycle, and a temperature correction was used for correcting the measurements. The long-term spectral responsivity was calculated using the time series of several lamps using two slightly different methods. The long-term spectral responsivity was scaled to the irradiance scale of the Helsinki University of Technology (HUT) for the whole of the measurement time-periods 1990–2006 and 1995–2006 for Sodankylä and Jokioinen, respectively. Both Brewers have participated in many international spectroradiometer comparisons, and have shown good stability. The differences between the Brewers and the portable reference spectroradiometer QASUME have been within 5% during 2002–2007

    Impacts of climate change on temperature, precipitation and hydrology in Finland – studies using bias corrected Regional Climate Model data

    No full text
    Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional climate models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction (BC) of RCM temperature and precipitation for Finland is carried out using different versions of the distribution based scaling (DBS) method. The DBS-adjusted RCM data are used as input of a hydrological model to simulate changes in discharges of four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS-adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period 1961–2000 and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the standard deviation of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly

    European UV DataBase (EUVDB) as a repository and quality analyser for solar spectral UV irradiance monitored in Sodankylä

    Get PDF
    Databases gathering atmospheric data have great potential not only as data storages but also in serving as platforms for coherent quality assurance (QA). We report on the flagging system and QA tools designed for and implemented in the European UV DataBase (EUVDB; <a href="http://uv.fmi.fi/uvdb/" target="_blank">http://uv.fmi.fi/uvdb/</a>) for measured data on solar spectral UV irradiance. We confine the study on the data measured by Brewer #037 MkII spectroradiometer in Sodankylä (67.37° N, 26.63° E) in 1990–2014. The quality indicators associated with the UV irradiance spectra uploaded into the database are retrieved from the database and subjected to a statistical analysis. The study demonstrates the performance of the QA tools of the EUVDB. In addition, it yields an overall view of the availability and quality of the solar UV spectra recorded in Sodankylä over a quarter of a century. Over 90 % of the four main quality indicators are flagged as GREEN, indicating the highest achievable quality. For the BLACK flags, denoting data not meeting the pre-defined requirements, the percentages for all the indicators remain below 0.12 %
    corecore