116 research outputs found

    Detection of the DCC gene product in normal and malignant colorectal tissues and its relation to a codon 201 mutation.

    Get PDF
    Protein expression of the putative tumour-suppressor gene DCC on chromosome 18q was evaluated in a panel of 16 matched colorectal cancer and normal colonic tissue samples together with DCC mRNA expression and allelic deletions (loss of heterozygosity, LOH). Determined by a polymerase chain reaction (PCR)-LOH assay, 12 of the 16 (75%) cases were informative with LOH occurring in 2 of the 12 cases. For DCC mRNA, transcripts could be detected in all analysed normal tissues (eight out of eight) by RT-PCR, whereas 6 of the 15 tumours were negative. DCC protein expression, investigated by immunohistochemistry using the monoclonal antibody 15041 A directed against the intracellular domain, was homogeneously positive in all normal tissue samples. In tumour tissues, no DCC protein was seen in 11 out of 16 samples (69%). For the DCC codon 201, we found a loss of a wild-type codon sequence caused by mutation or LOH in at least 8 out of 15 cases (53%) compared with the corresponding normal tissue. DCC protein expression was undetectable in eight of the nine tumours missing both wild-type codons. Only one of the five tumours with retained DCC protein expression had no detectable wild-type codon 201. In addition, 9 out of 15 normal tissue specimens were mutated in codon 201. In two out of three cases with homozygous wild-type codons in peripheral blood lymphocyte (PBL) DNA, mutations were already observed in the tumour adjacent normal colonic mucosa. We conclude that DCC immunostaining should be introduced in the clinicopathological routine because of its strong correlation with the known prognostic markers 18q LOH and mutation of codon 201

    Prognostic Markers of DNA Methylation and Next-Generation Sequencing in Progressive Glioblastoma from the EORTC-26101 Trial

    Get PDF
    PURPOSE: The EORTC-26101 study was a randomized phase II and III clinical trial of bevacizumab in combination with lomustine versus lomustine alone in progressive glioblastoma. Other than for progression-free survival (PFS), there was no benefit from addition of bevacizumab for overall survival (OS). However, molecular data allow for the rare opportunity to assess prognostic biomarkers from primary surgery for their impact in progressive glioblastoma. EXPERIMENTAL DESIGN: We analyzed DNA methylation array data and panel sequencing from 170 genes of 380 tumor samples of the EORTC-26101 study. These patients were comparable with the overall study cohort in regard to baseline characteristics, study treatment, and survival.RESULTS: Of patients' samples, 295/380 (78%) were classified into one of the main glioblastoma groups, receptor tyrosine kinase (RTK)1, RTK2 and mesenchymal. There were 10 patients (2.6%) with isocitrate dehydrogenase mutant tumors in the biomarker cohort. Patients with RTK1 and RTK2 classified tumors had lower median OS compared with mesenchymal (7.6 vs. 9.2 vs. 10.5 months). O6-methylguanine DNA-methyltransferase (MGMT) promoter methylation was prognostic for PFS and OS. Neurofibromin (NF)1 mutations were predictive of response to bevacizumab treatment.CONCLUSIONS: Thorough molecular classification is important for brain tumor clinical trial inclusion and evaluation. MGMT promoter methylation and RTK1 classifier assignment were prognostic in progressive glioblastoma. NF1 mutation may be a predictive biomarker for bevacizumab treatment.</p

    The CD3-Zeta Chimeric Antigen Receptor Overcomes TCR Hypo-Responsiveness of Human Terminal Late-Stage T Cells

    Get PDF
    Adoptive therapy of malignant diseases with tumor-specific cytotoxic T cells showed remarkable efficacy in recent trials. Repetitive T cell receptor (TCR) engagement of target antigen, however, inevitably ends up in hypo-responsive cells with terminally differentiated KLRG-1+ CD57+ CD7− phenotype limiting their therapeutic efficacy. We here revealed that hypo-responsiveness of CMV-specific late-stage CD8+ T cells is due to reduced TCR synapse formation compared to younger cells. Membrane anchoring of TCR components contributes to T cell hypo-responsiveness since dislocation of galectin-3 from the synapse by swainsonine restored both TCR synapse formation and T cell response. Transgenic expression of a CD3-zeta signaling chimeric antigen receptor (CAR) recovered hypo-responsive T cells to full effector functions indicating that the defect is restricted to TCR membrane components while synapse formation of the transgenic CAR was not blocked. CAR engineered late-stage T cells released cytokines and mediated redirected cytotoxicity as efficiently as younger effector T cells. Our data provide a rationale for TCR independent, CAR mediated activation in the adoptive cell therapy to avoid hypo-responsiveness of late-stage T cells upon repetitive antigen encounter

    Environmentally induced changes in antioxidant phenolic compounds levels in wild plants

    Full text link
    [EN] Different adverse environmental conditions cause oxidative stress in plants by generation of reactive oxygen species (ROS). Accordingly, a general response to abiotic stress is the activation of enzymatic and non-enzymatic antioxidant systems. Many phenolic compounds, especially flavonoids, are known antioxidants and efficient ROS scavengers in vitro, but their exact role in plant stress responses in nature is still under debate. The aim of our work is to investigate this role by correlating the degree of environmental stress with phenolic and flavonoid levels in stress-tolerant plants. Total phenolic and antioxidant flavonoid contents were determined in 19 wild species. Meteorological data and plant and soil samples were collected in three successive seasons from four Mediterranean ecosystems: salt marsh, dune, semiarid and gypsum habitats. Changes in phenolic and flavonoid levels were correlated with the environmental conditions of the plants and were found to depend on both the taxonomy and ecology of the investigated species. Despite species-specific differences, principal component analyses of the results established a positive correlation between plant phenolics and several environmental parameters, such as altitude, and those related to water stress: temperature, evapotranspiration, and soil water deficit. The correlation with salt stress was, however, very weak. The joint analysis of all the species showed the lowest phenolic and flavonoid levels in the halophytes from the salt marsh. This finding supports previous data indicating that the halophytes analysed here do not undergo oxidative stress in their natural habitat and therefore do not need to activate antioxidant systems as a defence against salinity.This work has been funded by the Spanish Ministry of Science and Innovation (Project CGL2008-00438/BOS), with contribution from the European Regional Development Fund. Thanks to Dr. Rafael Herrera for critical reading of the manuscript.Bautista, I.; Boscaiu, M.; Lidón, A.; Llinares Palacios, JV.; Lull, C.; Donat-Torres, MP.; Mayoral García-Berlanga, O.... (2016). Environmentally induced changes in antioxidant phenolic compounds levels in wild plants. Acta Physiologiae Plantarum. 38(1):1-15. https://doi.org/10.1007/s11738-015-2025-2S115381Agati G, Biricolti S, Guidi L, Ferrini F, Fini A, Tattini M (2011) The biosynthesis of flavonoids is enhanced similarly by UV radiation and root zone salinity in L. vulgare leaves. J Plant Physiol 168:204–212Agati G, Brunetti C, Di Ferdinando M, Ferrini F, Pollastri S, Tattini M (2013) Functional roles of flavonoids in photoprotection: new evidence, lessons from the past. Plant Physiol Biochem 72:35–45Albert A, Sareedenchai V, Heller W, Seidlitz HK, Zidorn C (2009) Temperature is the key to altitudinal variation of phenolics in Arnica montana L. cv. ARBO. Oecologia 160:1–8Appel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399Bachereau F, Marigo G, Asta J (1998) Effect of solar radiation (UV and visible) at high altitude on CAM-cycling and phenolic compounds biosynthesis in Sedum album. Physiol Plant 104:203–210Ballizany WL, Hofmann RV, Jahufer MZZ, Barrett BB (2012) Multivariate associations of flavonoid and biomass accumulation in white clover (Trifolium repens) under drought. Funct Plant Biol 39:167–177Bieza K, Lois R (2001) An Arabidopsis mutant tolerant to lethal ultraviolet-B levels shows constitutively elevated accumulation of flavonoids and other phenolics. Plant Physiol 126:1105–1115Bilger W, Rolland M, Nybakken L (2007) UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem Photobiol Sci 6:190–195Blumthaler M, Ambach M, Ellinger R (1997) Increase in solar UV radiation with altitude. J Photochem Photobiol B 39:130–134Boscaiu M, Lull C, Llinares J, Vicente O, Boira H (2013) Proline as a biochemical marker in relation to the ecology of two halophytic Juncus species. J Plant Ecol 6:177–186Bose J, Rodrigo-Moreno A, Shabala S (2013) ROS homeostasis in halophytes in the context of salinity stress tolerance. J Exp Bot 65:1241–1257Brown DE, Rashotte AM, Murphy AS, Normanly J, Tague BW, Peer WA, Taiz L, Muday GK (2001) Flavonoids act as a negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol 126:524–535Burchard P, Bilger W, Weissenböck G (2000) Contribution of hydroxycinnamates and flavonoids to epidermal shielding of UV-A and UV-B radiation in developing rye primary leaves as assessed by ultraviolet-induced chlorophyll fluorescence measurements. Plant Cell Environ 23:1373–1380Burriel F, Hernando V (1947) Nuevo método para determinar el fósforo asimilable en los suelos. Anales de Edafología Fisiología Vegetal 9:611–622Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20Coman C, Rugina OD, Socaciu C (2012) Plants and natural compounds with antidiabetic action. Not Bot Horti Agrobo 40:314–325Di Ferdinando M, Brunetti C, Fini A, Tattini M (2012) Flavonoids as antioxidants in plants under abiotic stresses. In: Ahmad P, Prasad MNV (eds) Abiotic stress responses in plants: metabolism, productivity and sustainability. Springer, New York, pp 159–179Di Ferdinando M, Brunetti C, Agati G, Tattini M (2014) Multiple functions of polyphenols in plants inhabiting unfavourable Mediterranean areas. Environ Exper Bot 103:107–116FAO (1990) Management of gypsiferous soils. FAO Soils Bull, p 62Fini A, Brunetti C, Di Ferdinando M, Ferrini F, Tattini M (2011) Stress-induced flavonoid biosynthesis and the antioxidant machinery of plants. Plant Signal Behav 6:709–711Gil R, Lull C, Boscaiu M, Bautista I, Lidón A, Vicente O (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Not Bot Horti Agrobo 39:9–17Gil R, Bautista I, Boscaiu M, Lidón A, Wankhade S, Sánchez H, Llinares J, Vicente O (2014) Responses of five Mediterranean halophytes to seasonal changes in environmental conditions. AoB Plants 6: plu049Gould KS, Lister C (2006) Flavonoid function in plants. In: Andersen ØM, Marham KR (eds) Flavonoids, chemistry, biochemistry and application. CRC Press, Boca Raton, pp 397–442Hajimahmoodi M, Moghaddam G, Ranjbar AM, Khazani H, Sadeghi N, Oveisi MR, Jannat B (2013) Total phenolic, flavonoids, tannin content and antioxidant power of some Iranian pomegranate flower cultivars (Punica granatum L.). Am J Plant Sci 4:1815–1820Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141:312–322Harborne JB, Williams C (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504Hernández I, Alegre L, Munné-Bosch S (2004) Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol 24:1303–1311Hernández I, Alegre L, Van Breusegem F, Munné-Bosch S (2008) How relevant are flavonoids as antioxidants in plants? Trends Plant Sci 14:125–132Iwashina T (2000) The structure and distribution of the flavonoids in plants. J Plant Res 113:287–299Jaakola L, Määttä-Riihinen K, Kärenlampi S, Hohtola A (2004) Activation of flavonoid biosynthesis by solar radiation in bilberry (Vaccinium myrtillus L.) leaves. Planta 218:721–728Jenkins GI (2009) Signal transduction in responses to UB-B radiation. Annu Rev Plant Biol 60:407–431Jenkins GI, Long JC, Wade HK, Shenton MR, Bibikova TN (2001) UV and blue light signalling: pathways regulating chalcone synthase gene expression in Arabidopsis. New Phytol 151:121–131Kaulen H, Schell J, Kreuzaler F (1986) Light-induced expression of the chimeric chalcone synthase-NPTII gene in tobacco cells. EMBO J 5:1–8Kim DO, Jeong SW, Lee CY (2003) Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81:321–326Kirakosyan A, Seymour E, Kaufman PB, Warber S, Bolling S, Chang SC (2003) Antioxidant capacity of polyphenolic extracts from leaves of Crataegus laevigata and Crataegus monogyna (Hawthorn) subjected to drought and cold stress. J Agr Food Chem 51:3973–3976Knudssen D, Peterson GA, Pratt PF (1982) Lithium, Sodium and Potassium. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. American Society of Agronomy, Madison, pp 225–246Koes RE, Spelt CE, Mol JNM (1989) The chalcone synthase multigene family of Petunia hybrida (V30): differential, light-regulated expression during flower development and UV light induction. Plant Mol Biol 12:213–225Körner C (1999) Alpine plant life. Functional plant ecology of high mountain ecosytems, BerlinKumar S, Pandey AK (2013) Chemistry and biological activities of flavonoids: an overview. Sci World J 2013:1–16Kuo S (1996) Phosphorus. In: Spark D (ed) Methods of soil analysis: chemical methods, part 3. American Society of Agronomy, Madison, pp 869–919Lavola A (1998) Accumulation of flavonoids and related compounds in birch induced by UV-B irradiance. Tree Physiol 18:53–58Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis flavonoid mutants are hypersensitive to UV-B radiation. Plant Cell 5:171–179Llinares JV, Bautista I, Donat MP, Lidón A, Lull C, Mayoral O, Wankhade S, Boscaiu M, Vicente O (2015) Responses to environmental stress in plants adapted to Mediterranean gypsum habitats. Not Sci Biol 7:34–44Marinova D, Ribarova F, Atanassova M (2005) Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J Univ Chem Technol Metall 40:255–260Martens H, Naes T (1989) Multivariate calibration. Wiley, New YorkMurai Y, Takemura S, Takeda K, Kitajima K, Iwashina T (2009) Altitudinal variation of UV-absorbing compounds in Plantago asiatica. Biochem Syst Ecol 37:78–384Nakabayashi R, Yonekura-Sakakibara K, Urano K, Suzuki M, Yamada Y, Nishizawa T, Matsuda F, Kojima M, Sakakibara H, Shinozaki K, Michael AJ, Tohge T, Yamazaki M, Saito K (2014) Enhancement of oxidative and drought tolerance in Arabidopsis by overaccumulation of antioxidant flavonoids. Plant J 77:367–379Napoli CA, Fahy D, Wang HY, Taylor LP (1999) white anther: a petunia mutant that abolishes pollen flavonoid accumulation, induces male sterility, and is complemented by a chalcone synthase transgene. Plant Physiol 120:615–622Nechita A, Cotea VV, Nechita CB, Pincu RR, Mihai CT, Colibaba CL (2012) Study of cytostatic and cytotoxic activity of several polyphenolic extracts obtained from Vitis vinifera. Not Bot Horti Agrobo 40:216–221Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL et al (eds) Methods of soil analysis, chemical and microbiological properties. Soil Science Society of America, Madison, pp 539–577Nelson RE, Klameth LC, Nettleton WD (1978) Determining soil gypsum content and expressing properties of gypsiferous soils. Soil Sci Soc Am J 42:659–661Nile SH, Khobragade CN (2010) Antioxidant activity and flavonoid derivatives of Plumbago zeylanica. J Nat Prod 3:130–133Park HL, Lee SW, Jung KH, Hahn TR, Cho MH (2013) Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96:57–71Pękal A, Pyrzynska K (2014) Evaluation of aluminium complexation reaction for flavonoid content assay. Food Anal Method 7:1776–1782Pollastri S, Tattini M (2011) Flavonols: old compounds for old roles. Ann Bot 108:1225–1233Ravishankar D, Rajora AK, Greco F, Osborn HM (2013) Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell B 45:2821–2831Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio Med 20:933–956Rieger G, Müller M, Guttenberger H, Bucar F (2008) Influence of altitudinal variation on the content of phenolic compounds in wild populations of Calluna vulgaris, Sambucus nigra, and Vaccinium myrtillus. J Agric Food Chem 58:9080–9086Rivas-Martínez S, Rivas-Saenz S (1996–2009) Worldwide bioclimatic classification system. Phytosociological Research Center, Spain. http://www.globalbioclimatics.org . Accessed 1 July 2013Rohman A, Riyanto S, Yuniarti N, Saputra WR, Utami R, Mulatsih W (2010) Antioxidant activity, total phenolic, and total flavonoid of extracts and fractions of red fruit (Pandanus conoideus Lam). Int Food Res J 17:97–106Romano B, Pagano E, Montanaro V, Fortunato AL, Milic N, Borrelli F (2013) Novel insights into the pharmacology of flavonoids. Phytother Res 27:1588–1596Rozema J, van de Staaij J, Björn LO, Caldwell MM (1997) UV-B as an environmental factor in plant life: stress and regulation. Trends Ecol Evol 12:22–28Rozema J, Bjorn LO, Bornman JF, Gaberščik A, Häder DP, Trošt T, Germ M, Klisch M, Gröniger A, Sinha RP, Lebert M, He YY, Buffoni-Hall R, de Bakker NVJ, van de Staaij J, Meijkamp BB (2002) The role of UV-B radiation in aquatic and terrestrial ecosystems—an experimental and functional analysis of the evolution of UV-absorbing compounds. Photochem Photobiol B Biol 66:2–12Schulze-Lefert P, Dangl JL, Becker-André M, Hahlbrock K, Schulz W (1989) Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J 8:651–656Sena MM, Frighetto RTS, Valarini PJ, Tokeshi H, Poppi RJ (2002) Discrimination of management effects on soil parameters by using principal component analysis: a multivariate analysis case study. Soil Till Res 67:171–181Shulaev V, Oliver DJ (2006) Metabolic and proteomic markers for oxidative stress. New tools for reactive oxygen species research. Plant Physiol 141:367–372Singleton VL, Rossi JA Jr (1965) Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am J EnolVitic 16:144–158Spitaler R, Winkler A, Lins I, Yanar S, Stuppner H, Zidorn C (2008) Altitudinal variation of phenolic contents in flowering heads of Arnica montana cv. ARBO: a 3-year comparison. J Chem Ecol 34:369–375Stapleton AE, Walbot V (1994) Flavonoids can protect maize DNA from the induction of UV radiation damage. Plant Physiol 105:881–889Takahashi M, Asada K (1988) Superoxide production in aprotic interior of chloroplast thylakoids. Arch Biochem Biophys 267:714–722Tattini M, Gravano E, Pinelli P, Mulinacci N, Romani A (2000) Flavonoids accumulate in leaves and glandular trichomes of Phillyrea latifolia exposed to excess solar radiation. New Phytol 148:69–77Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163:547–561Treutter D (2005) Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol 7:581–591Treutter D (2006) Significance of flavonoids in plant resistance: a review. Environ Chem Lett 4:147–157Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390Williams CA, Grayer RJ (2004) Anthocyanins and other flavonoids. Nat Prod Rep 21:539–573Winkel-Shirley B (2002) Biosynthesis of flavonoids and effect of stress. Curr Opin Plant Biol 5:218–223Ylstra B, Touraev A, Benito Moreno RM, Stöger E, van Tunen AA, Vicente O, Mol JNM, Heberle-Bors E (1992) Flavonols stimulate development, germination and tube growth of tobacco pollen. Plant Physiol 100:902–907Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem 64:555–559Zidorn C, Schubert B, Stuppner H (2005) Altitudinal differences in the contents of phenolics in flowering heads of three members of the tribe Lactuceae (Asteraceae) occurring as introduced species in New Zealand. Biochem Syst Ecol 33:855–87

    Sterility and Gene Expression in Hybrid Males of Xenopus laevis and X. muelleri

    Get PDF
    BACKGROUND: Reproductive isolation is a defining characteristic of populations that represent unique biological species, yet we know very little about the gene expression basis for reproductive isolation. The advent of powerful molecular biology tools provides the ability to identify genes involved in reproductive isolation and focuses attention on the molecular mechanisms that separate biological species. Herein we quantify the sterility pattern of hybrid males in African Clawed Frogs (Xenopus) and apply microarray analysis of the expression pattern found in testes to identify genes that are misexpressed in hybrid males relative to their two parental species (Xenopus laevis and X. muelleri). METHODOLOGY/PRINCIPAL FINDINGS: Phenotypic characteristics of spermatogenesis in sterile male hybrids (X. laevis x X. muelleri) were examined using a novel sperm assay that allowed quantification of live, dead, and undifferentiated sperm cells, the number of motile vs. immotile sperm, and sperm morphology. Hybrids exhibited a dramatically lower abundance of mature sperm relative to the parental species. Hybrid spermatozoa were larger in size and accompanied by numerous undifferentiated sperm cells. Microarray analysis of gene expression in testes was combined with a correction for sequence divergence derived from genomic hybridizations to identify candidate genes involved in the sterility phenotype. Analysis of the transcriptome revealed a striking asymmetric pattern of misexpression. There were only about 140 genes misexpressed in hybrids compared to X. laevis but nearly 4,000 genes misexpressed in hybrids compared to X. muelleri. CONCLUSIONS/SIGNIFICANCE: Our results provide an important correlation between phenotypic characteristics of sperm and gene expression in sterile hybrid males. The broad pattern of gene misexpression suggests intriguing mechanisms creating the dominance pattern of the X. laevis genome in hybrids. These findings significantly contribute to growing evidence for allelic dominance in hybrids and have implications for the mechanism of species differentiation at the transcriptome level

    Serotonin-immunoreactivity and serotonin binding sites in the brain of the blowfly calliphora erythrocephala: A combined immunohistochemical and autoradiographic study

    No full text
    1. The serotonergic system in the brain of the blowfly, Calliphora erythrocephala, was analysed by two different methods. 2. Serotonergic neurones were visualized by immunocytochemistry with an antibody against serotonin. 3. Putative serotonin receptors were localized by quantitative autoradiography of [3H]serotonin binding. 4. We found regions with a colocalization of immunoreactive neurones and binding sites, and regions with a mismatch as well. 5. In regions of overlap, which include the optic lobes and the central body complex, serotonin might act as a neurotransmitter. 6. In areas of mismatch, as found e.g. in the lateral parts of the protocerebrum, serotonin might have a modulatory action

    Management des diabetischen Makulaödems nach Anti-VEGF-Therapie mit navigierter Laserkoagulation

    No full text
    corecore