2,780 research outputs found

    Heat-transfer tests on the Rockwell International space shuttle orbiter with and without simulated protuberances

    Get PDF
    Aerothermodynamic tests on the forward half of the Rockwell International Space Shuttle Orbiter Configuration 140C were conducted at Mach number 8. The phase-change paint and thin-skin thermocouple techniques were used to determine the aerodynamic heating rates on the Orbiter models during simulated atmospheric reentry. Smooth 0.04-scale models and models with scaled protuberances and indentations which simulated the windshields, cargo bay door hinges, vents, and thruster nozzles were tested over an angle-of-attack range from 20 to 45 deg at yaw angles from -5 to 5 deg and at Reynolds numbers, based on the total Orbiter scaled length, from 2.15 to 15.9 million. Comparisons of the model heat-transfer rates obtained with a smooth surface and with scaled protuberances are presented

    Barkhausen-type noise in the resistance of antiferromagnetic Cr thin films

    Full text link
    We present an experimental study of the changes generated on the electrical resistance R(T)R(T) of epitaxial Cr thin films by the transformation of quantized spin density wave domains as the temperature is changed. A characteristic resistance noise appears only within the same temperature region where a cooling-warming cycle in R(T)R(T) displays hysteretic behavior. We propose an analysis based on an analogy with the Barkhausen noise seen in ferromagnets. There fluctuations in the magnetization M(H)M(H) occur when the magnetic field HH is swept. By mapping M→Ψ0M \rightarrow \Psi_0 and H→TH \rightarrow T, where Ψ0\Psi_0 corresponds to the order parameter of the spin density wave, we generalize the Preisach model in terms of a random distribution of {\it resistive hysterons} to explain our results. These hysterons are related to distributions of quantized spin density wave domains with different sizes, local energies and number of nodes.Comment: 5 pages, 3 figures. To be published in Europhysics Letter

    Strongly Inhomogeneous Phases and Non-Fermi Liquid Behavior in Randomly Depleted Kondo Lattices

    Full text link
    We investigate the low-temperature behavior of Kondo lattices upon random depletion of the local ff-moments, by using strong-coupling arguments and solving SU(NN) saddle-point equations on large lattices. For a large range of intermediate doping levels, between the coherent Fermi liquid of the dense lattice and the single-impurity Fermi liquid of the dilute limit, we find strongly inhomogeneous states that exhibit distinct non-Fermi liquid characteristics. In particular, the interplay of dopant disorder and strong interactions leads to rare weakly screened moments which dominate the bulk susceptibility. Our results are relevant to compounds like Ce_{x}La_{1-x}CoIn_5 and Ce_{x}La_{1-x}Pb_3Comment: 4 pages, 5 figure

    Spin fluctuations with two-dimensional XY behavior in a frustrated S = 1/2 square-lattice ferromagnet

    Get PDF
    The spin dynamics of the layered square-lattice vanadate Pb2VO(PO4)2 is investigated by electron spin resonance at various magnetic fields and at temperatures above magnetic ordering. The linewidth divergence towards low temperatures seems to agree with isotropic Heisenberg-type spin exchange suggesting that the spin relaxation in this quasi-two dimensional compound is governed by low-dimensional quantum fluctuations. However, a weak easy- plane anisotropy of the g factor points to the presence of a planar XY type of exchange. Indeed, we found that the linewidth divergence is described best by XY-like spin fluctuations which requires a single parameter only. Therefore, ESR-probed spin dynamics could establish Pb2VO(PO4)2 as the first frustrated square lattice system with XY-inherent spin topological fluctuations.Comment: 5 pages, 3 figure

    On the equivalence between topologically and non-topologically massive abelian gauge theories

    Get PDF
    We analyse the equivalence between topologically massive gauge theory (TMGT) and different formulations of non-topologically massive gauge theories (NTMGTs) in the canonical approach. The different NTMGTs studied are St\"uckelberg formulation of (A) a first order formulation involving one and two form fields, (B) Proca theory, and (C) massive Kalb-Ramond theory. We first quantise these reducible gauge systems by using the phase space extension procedure and using it, identify the phase space variables of NTMGTs which are equivalent to the canonical variables of TMGT and show that under this the Hamiltonian also get mapped. Interestingly it is found that the different NTMGTs are equivalent to different formulations of TMGTs which differ only by a total divergence term. We also provide covariant mappings between the fields in TMGT to NTMGTs at the level of correlation function.Comment: One reference added and a typos corrected. 15 pages, To appear in Mod. Phys. Lett.

    BTZ Black Hole Entropy from Ponzano-Regge Gravity

    Get PDF
    The entropy of the BTZ black hole is computed in the Ponzano-Regge formulation of three-dimensional lattice gravity. It is seen that the correct semi-classical behaviour of entropy is reproduced by states that correspond to all possible triangulations of the Euclidean black hole.Comment: 11 pages LaTeX, 3 eps figures, some minor clarifications added, result unchange

    Reductions for the Stable Set Problem

    Get PDF
    One approach to finding a maximum stable set (MSS) in a graph is to try to reduce the size of the problem by transforming the problem into an equivalent problem on a smaller graph. This paper introduces several new reductions for the MSS problem, extends several well-known reductions to the maximum weight stable set (MWSS) problem, demonstrates how reductions for the generalized stable set problem can be used in conjunction with probing to produce powerful new reductions for both the MSS and MWSS problems, and shows how hypergraphs can be used to expand the capabilities of clique projections. The effectiveness of these new reduction techniques are illustrated on the DIMACS benchmark graphs, planar graphs, and a set of challenging MSS problems arising from Steiner Triple Systems

    Spin correlations and exchange in square lattice frustrated ferromagnets

    Full text link
    The J1-J2 model on a square lattice exhibits a rich variety of different forms of magnetic order that depend sensitively on the ratio of exchange constants J2/J1. We use bulk magnetometry and polarized neutron scattering to determine J1 and J2 unambiguously for two materials in a new family of vanadium phosphates, Pb2VO(PO4)2 and SrZnVO(PO4)2, and we find that they have ferromagnetic J1. The ordered moment in the collinear antiferromagnetic ground state is reduced, and the diffuse magnetic scattering is enhanced, as the predicted bond-nematic region of the phase diagram is approached.Comment: 4 pages, 4 figure

    Strong frustration due to competing ferromagnetic and antiferromagnetic interactions: magnetic properties of M(VO)2(PO4)2 (M = Ca and Sr)

    Full text link
    We present a detailed investigation of the magnetic properties of complex vanadium phosphates M(VO)2(PO4)2 (M = Ca, Sr) by means of magnetization, specific heat, 31P NMR measurements, and band structure calculations. Experimental data evidence the presence of ferro- and antiferromagnetic interactions in M(VO)2(PO4)2 resulting in a nearly vanishing Curie-Weiss temperature \theta_{CW} < 1 K that contrasts with the maximum of magnetic susceptibility at 3 K. Specific heat and NMR measurements also reveal weak exchange couplings with the thermodynamic energy scale J_c = 10-15 K. Additionally, the reduced maximum of the magnetic specific heat indicates strong frustration of the spin system. Band structure calculations show that the spin systems of the M(VO)2(PO4)2 compounds are essentially three-dimensional with the frustration caused by competing ferro- and antiferromagnetic interactions. Both calcium and strontium compounds undergo antiferromagnetic long-range ordering at T_N = 1.5 K and 1.9 K, respectively. The spin model reveals an unusual example of controllable frustration in three-dimensional magnetic systems.Comment: 14 pages, 13 figures, 3 tables; published versio
    • …
    corecore