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Abstract

One approach to finding a maximum stable set (MSS) in a graph isto try to reduce the size of the problem by
transforming the problem into an equivalent problem on a smaller graph. This paper introduces several new reductions
for the MSS problem, extends several well-known reductionsto the maximum weight stable set (MWSS) problem,
demonstrates how reductions for the generalized stable setproblem can be used in conjunction with probing to produce
powerful new reductions for both the MSS and MWSS problems, and shows how hypergraphs can be used to expand
the capabilities of clique projections. The effectivenessof these new reduction techniques are illustrated on the DIMACS
benchmark graphs, planar graphs, and a set of challenging MSS problems arising from Steiner Triple Systems.
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1. Introduction

A stable setis a set of nodes in a graph that are
mutually nonadjacent. The problems of finding a maxi-
mum stable set (MSS) or a maximum weight stable set
(MWSS) in a graph are NP-complete problems that have
received a great deal of attention in the literature [8].
One approach to finding an MWSS is to try to reduce
the size of the problem by transforming the problem
into an equivalent problem on a smaller graph. Most of
the known reductions fall into one of three categories.
Inclusion reductions are based on finding a set of nodes
S such that there exists an MWSS that includesS. Thus
the problem reduces to finding an MWSS in the graph
obtained by deletingS and its neighbors. Exclusion re-
ductions are based on finding a set of nodesU such that
there exists an MWSS that excludesU, in which case the
problem reduces to finding an MWSS in the graph ob-
tained by deletingU. Contraction reductions are based
on finding a set of nodesS such that either there is an
MWSS that containsS or there is an MWSS that con-
tains the neighbors ofS. Thus the problem reduces to
finding an MWSS in a graph obtained by replacingS
and its neighbors with a single node.

Reductions for the MSS and MWSS problems have
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been used to study properties of stability critical graphs
and facets of the stable set polytope. They have been
used algorithmically in heuristics, polynomial time al-
gorithms for special classes of graphs, and exact algo-
rithms. For our purposes, it will be convenient to divide
exact algorithms into two types: theoretical and practi-
cal. Both types are based on recursive algorithms. The-
oretical exact algorithms focus on eliminating redun-
dant branches, without using lower and upper bounds,
with the goal of producing a good time bound for the
algorithm (e.g., see [7,13,14,19,34,35,42,44,45]). Prac-
tical algorithms tend to focus on using lower and up-
per bounds, in addition to using the techniques used by
theoretical algorithms to eliminate redundant branches
(e.g., see [2–6,10,12,16,24,25,27,29–33,40,46]). Papers
that present theoretical exact algorithms do not usu-
ally include any computational results, while papers that
present practical exact algorithms do not usually include
time bounds (since it is more difficult to compute tight
time bounds for these algorithms). Both theoretical and
practical exact algorithms have made extensive use of
reductions. Details on how reductions have been used
are presented in Section 3.

Any binary integer program with two variables per
inequality (BIP2VAR) can be written as

(BIP2) z0 + maxbx
xv ≤ xw ∀ (v, w) ∈ A

xv + xw ≥ 1 ∀ (v, w) ∈ C
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xv + xw ≤ 1 ∀ (v, w) ∈ E

xv ∈ {0, 1} ∀ v ∈ V,

wherez0 is a constant term (initially zero) that will be
used later. This problem has been called the General-
ized Stable Set Problem (GSSP) because the MWSS
problem is a special case of it withA = C = ∅. A bi-
graph is a multigraph that may contain three types of
edges: undirected, directed, and bidirected. With every
BIP2VAR, there is an associated bigraphB consisting
of the set of nodesV = {1, ..., n} corresponding to the
n variables in BIP2 and the sets of edgesA,C, andE.
Let B = (V,A,C,E) denote the bigraph andαb(B)
or αb(V,A,C,E) denote the optimal value of BIP2. If
G = (V,E) is a graph, thenαb(G) ≡ αb(V, ∅, ∅, E) is
the weight of an MWSS inG.

If a bigraphB contains two nodesv andw such that
there is more than one type of edge betweenv andw,
then at least one of the nodes can be eliminated. For
example, if(v, w) ∈ A and(v, w) ∈ E, thenxv must be
zero in every feasible solution of BIP2, so nodev can be
eliminated fromB; such reductions will be examined in
greater detail in Section 2. The purpose of this paper is
to introduce new reductions for the stable set problem
(Section 3.), show how reductions for the GSSP can
be used to generalize reductions for the MSS problem
to the MWSS problem (Section 3.), show how probing
can be used together with GSSP reductions to achieve
greater reductions (Section4.), and show how clique
projections can be extended to hypergraphs to obtain
reductions for the stable set problem (Section 5.).

Two problems closely related to the MWSS problem
are the maximum weight clique problem and the min-
imum weight node cover problem. A clique is a set of
mutually adjacent nodes, so finding an MWSS is di-
rectly equivalent to finding a maximum weight clique
in the complement of the graph. A node cover is a set
of nodesC such that every edge inE has at least one
endpoint inC. If C is a minimum weight node cover,
thenV \C is an MWSS, so the node cover problem and
the MWSS problem also are directly equivalent to each
other. Many of the references cited in this paper actually
address the maximum clique or minimum node cover
problem, but their results can be immediately translated
into results for the MWSS problem.

2. Reductions for Generalized Stable Set Problems

The closureof a bigraphB = (V,A,C,E) is the
bigraph obtained by adding every edge that is implied

by the original set of edges. To describe the closure, it
will be convenient to assign a plus or minus to the ends
of each edge. A plus will be assigned to the ends of
each edge inE, a minus will be assigned to the ends
of each edge inC, and if (v, w) ∈ A, then a plus will
be assigned to the end incident tov and a minus will
be assigned to the end incident tow. This assignment
of plus and minus signs to an edge(v, w) is obtained
by using the sign ofxv andxw after the corresponding
constraint has been written as a less than or equal to
inequality with all the variables on the left-hand side of
the inequality. Suppose that(u, v) and(v, w) are edges
such that(u, v) has a plus assigned to the end incident
to v and(v, w) has a minus assigned to the end incident
to v. Then adding the two corresponding inequalities
(written in less than or equal to form) shows that these
two edges imply a third edge,(u,w), where the sign
assigned tou will be the same as the sign assigned to
u in the edge(u, v) and the sign assigned tow will be
the same as the sign assigned tow in the edge(v, w).
Johnson and Padberg [20] prove that a bigraph is closed
if for every pair of edges, the edge implied by that pair
(if any) is already inB. They also develop anO(n3)
algorithm to compute the closure of a bigraph.

It is relatively simple to detect variables that can be
eliminated once the closure ofB has been computed.
The four basic configurations of edges that permit vari-
ables to be eliminated are shown in Table 1.

Table 1

Configuration of Edges Implication Reduction

1. (u, v) ∈ A, (u, v) ∈ C xv = 1 Deletev from B.

Add bv to z0.

2. (u, v) ∈ A, (u, v) ∈ E xu = 0 Deleteu from B.

3. (u, v), (v, u) ∈ A xu = xv Deletev from B.

Add bv to bu.

4. (u, v) ∈ C, (u, v) ∈ E xu + xv = 1 Deletev from B.

Add bv to z0.

Subtractbv from bu.

Four Basic GSSP Reductions.

Note that the third reduction transforms an MSS prob-
lem into an MWSS problem. Also the fourth reduction
can produce a negative value ofbu; to avoid this, choose
the node with the smaller objective function coefficient
for elimination. If three edges are present between a pair
of nodes, then the reductions listed above can be com-
bined. If a pair of nodes has four edges between them,
then the problem is infeasible. Infeasibility should not
occur in our reductions, because we are always start-
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ing with a stable set problem on a graphG = (V,E),
which always has a feasible solution. After all possible
reductions have been made, there will be at most one
edge between any pair of nodes.

For a closed, reduced bigraph, Sewell [39] has shown
that the GSSP is actually an MWSS problem in disguise
by showing that the constraints inA and C can be
ignored.
Theorem 1 SupposeB = (V,A,C,E) is a closed,
reduced bigraph,G = (V,E) , and b ≥ 0. Then
αb(V,A,C,E) = αb(V, ∅, ∅, E).

Now supposeA is a set of constraints of the form
xu ≤ xv, C is a set of constraints of the formxu +
xv ≥ 1, and E∗ is a set of constraints of the form
xu + xv ≤ 1. Further suppose that there exists an
MWSS inG that satisfies all the constraints inA, C,
andE∗. Let B = (V,A,C,E∗ ∪ E). Thenαb(G) =
αb(B) (the constraints forB contain the constraints
for G implies αb(G) ≥ αb(B); and G contains an
MWSS that satisfies the constraints forB implies that
αb(G) ≤ αb(B)). Next close and reduceB to ob-
tain B′ = (V ′, A′, C′, E′) with weighting b′ and let
G′ = (V ′, E′). Theorem 1 yieldsαb′(B

′) = αb′(G
′),

so if any nodes inB were eliminated during the reduc-
tion procedure, then those same nodes can be eliminated
from G to produce an equivalent MWSS problem on a
smaller graph. That is, reductions in the bigraphB lead
directly to reductions in the graphG. This technique
will be used to develop several new reductions in Sec-
tion 3.Methods of obtaining the additional sets of con-
straintsA, C, andE∗ via probing will be discussed in
Section 4.

3. Direct Reductions for the Stable Set Problem

In this section we review many of the reductions that
have been used for the MSS problem and note how they
have been used in the literature. We also extend several
of these reductions to the weighted case and introduce
a number of new reductions. Throughout this section,
let G = (V,E) be a graph andb ≥ 0 be a nonnegative
weighting of the nodes ofG.

A few definitions are necessary before proceeding.
Theneighborhood of nodeu in G is defined asN(u) =
{v ∈ V : (u, v) ∈ E} and theneighborhood of a set of
nodesU is defined asN(U) = {v ∈ V \U : ∃u ∈ U ∋
(u, v) ∈ E}. N2(u) is defined to beN(N(u))\({u} ∪
N(u)). The degree of nodev is d(v) = |N(v)|. If
V ′ ⊆ V, then b(V ′) =

∑

v∈V ′ bv andG[V ′] denotes
the subgraph ofG induced byV ′. Forv ∈ V, G−v will

be used to denoteG[V \{v}] andG − V ′ will denote
G[V \V ′] for V ′ ⊆ V.

3.1. Exclusion Reductions

Exclusion reductions are based on finding a set of
nodesU such that there exists an MWSS that excludes
U. In this case, the problem reduces to finding an MWSS
in the graph obtained by deletingU. A nodev in graph
G dominatesa nodeu if (u, v) ∈ E and N(v) ⊆
{u} ∪N(u). For the MSS problem, if there is an MSS
that containsu, then there is also an MSS that con-
tainsv but notu. Hence there is an MSS that excludes
u, which means thatu can be deleted from the graph.
This reduction has been used in several of the fastest-
known theoretical exact algorithms for the MSS prob-
lem [7,34,35,44]. This reduction can be generalized to
the MWSS problem as shown in the following propo-
sition.
Proposition 2 If a nodev dominates a nodeu in a
graph G = (V,E) and bv ≥ bu, thenαb(G − u) =
αb(G) (i.e., nodeu can be deleted fromG).

Proof. Let S be an MWSS. IfS containsu, thenS
cannot containv, so S′ = (S\{u}) ∪ {v} is a stable
set withb(S′) ≥ b(S), and henceS′ is an MWSS that
excludesu. Thusαb(G− u) = αb(G).

Another exclusion reduction can be defined for a
closed, reduced bigraphB. If a nodeu is connected to
every other node inB by either an edge inA or an edge
in E, then the weight of the heaviest stable set that con-
tainsu equalsbu +

∑

v:(u,v)∈A bv. In such a case, the
search for a heavier stable set can be restricted toB−u,
hence the bigraph can be reduced by excludingu.

3.2. Inclusion Reductions

Inclusion reductions are based on finding a set of
nodesS such that there exists an MWSS that includes
S. Thus the problem reduces to finding an MWSS in
the graph obtained by deletingS and its neighbors.

One type of inclusion reduction is based on simpli-
cial nodes. A nodeu in graphG is simplicial if N(u)
is a clique. For the MSS problem, it is easy to see that
if u is simplicial, then there must be an MSS that con-
tainsu. Reductions based on simplicial nodes have been
used in perfect elimination schemes for chordal graphs
(see [37] for a discussion of chordal graphs and further
references). Mannino and Sassano [24] report that sim-
plicial reductions were crucial in solving some of the
larger MSS problems in the DIMACS test set. Special
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cases of simplicial nodes, that have been used in several
of the theoretical exact algorithms for the MSS prob-
lem, are nodes that have degree zero, one, or two (as
part of a triangle) [34,35,44]. The situation is slightly
more complicated for the MWSS problem, since there
may not be an MWSS that includesu. Nonetheless, a
reduction can be made, as given in the next proposition.
Proposition 3 Supposeu is a simplicial node in a
graphG = (V,E) with node weightsb ≥ 0. Let

b′v =







0 if v = u or bv ≤ bu andv ∈ N(u)
bv − bu if bv > bu andv ∈ N(u)
bv otherwise

and letG′ be the graph obtained by deleting all nodes
v ∋ b′v = 0. Thenαb′(G

′) = αb(G)− bu.
Proof. If v ∈ N(u) andbv ≤ bu, thenv can be deleted
by Proposition 2 sinceu dominatesv. So we can now
assumebv > bu ∀v ∈ N(u). Every MWSS must con-
tain exactly one node of{u} ∪ N(u), so subtracting
bu from each node in{u} ∪N(u) decreasesαb(G) by
preciselybu.

Another type of inclusion reduction is based on the
surplus function. ForV ′ ⊆ V, let Γ(G, V ′) = {w ∈
V : ∃v ∈ V ′ ∋ (v, w) ∈ E}. HenceΓ(V ′) = N(V ′) if
and only ifV ′ is a stable set. Lovász and Plummer [23]
introduced asurplusfunction σ (G, V ′) = |Γ (V ′)| −
|V ′| which Sewell [38] generalized to the weighted case
asσb(G, V ′) = b(Γ(G, V ′)) − b(V ′). WheneverG is
clear from the context, it will be suppressed from the
notation ofΓ andσb. Furthermore, the subscriptb will
be suppressed fromσb(V

′) if bv = 1 ∀v ∈ V. The
next theorem gives sufficient conditions, in terms of
the surplus function, under which a stable set will be
contained in every MWSS [18].
Theorem 4 (Hammer, Hansen, and Simeone)
Supposeb > 0, σb(I) = min{σb(I

′) : I ′ is a stable
set inG}, and I has minimum cardinality among all
such minimizers (note thatI may be empty). ThenI is
contained in every MWSS.

By Theorem 4,G can be reduced by eliminatingI
and its neighbors. LetG′ = G[V \(I ∪N(I))]. By the
definition of I, it can be shown thatσb(G

′, S) ≥ 0 for
every stable setS in G′. In [38] it was shown that if
there exists a stable setS in G′ such thatσb(S) = 0,
then there exists an MWSS containingS. Consequently,
G′ can be further reduced by eliminatingS ∪ N(S).
The setsI andS can be found in polynomial time - see
[11,18,28] for details. These reductions have played a
pivotal role in fixed-parameter algorithms for the vertex
cover problem [13,14], which in turn have yielded sev-

eral of the fastest-known theoretical exact algorithms
for the MSS problem.

A third type of inclusion reduction is based on the
following theorem [28].
Theorem 5 (Nemhauser and Trotter) If S is an
MWSS inG[S ∪ N(S)], then S is contained in an
MWSS inG.

This reduction technique includes the simplicial re-
duction for the MSS problem (but not for the MWSS
problem) since ifu is simplicial, then it is an MSS in
{u}∪N(u). This reduction also includes the surplus re-
ductions. The following proposition is needed to prove
this.
Proposition 6 SupposeG = (V,E) is a graph with
node weightsb ≥ 0 andS is a nonempty stable set such
thatσb (S) ≤ 0. If S is not an MWSS inG [S ∪N (S)] ,
then there exists a subsetS′ of S such thatσb (S

′) <
σb (S) .
Proof. Let I be an MWSS inG [S ∪N (S)] . By as-
sumption,S is not an MWSS inG, henceb (I) > b (S) .
Let IS = I ∩ S andIN = I ∩N(S). Clearly,IN 6= ∅,
otherwiseS would be an MWSS inG [S ∪N (S)] .
If I ⊆ N (S) , then σb (S) = b (N (S)) − b (S) ≥
b (I) − b (S) > 0, which contradicts thatσb (S) ≤ 0.
HenceIS 6= ∅. Then

σb (IS) = b(N (IS))− b(IS)

≤ b (N (S) \ IN )− b(IS)

= b(N(S))− b (IN )− b (IS)

= b(N(S))− b (IN ∪ IS)

= b(N(S))− b (I)

< b(N(S))− b (S)

= σb (S) .

The first inequality holds becauseN (IS) ⊆ N (S)\IN .
The second inequality holds becauseb (I) > b (S) .
Therefore,IS is a subset ofS such thatσb (IS) <
σb (S) .

Let I be as defined in Theorem 4 andS be as de-
fined immediately after Theorem 4. Proposition 6 im-
plies thatI is an MWSS inI ∪ N(I) becauseI is
defined to be the stable set with the smallest surplus.
Similarly, Proposition 6 implies thatS is an MWSS in
G′ [S ∪N(S)] becauseσb (G

′, S) = 0 and every sta-
ble set inG′ has nonegative surplus. Thus, Theorem 5
includes the surplus reductions. In general, it is diffi-
cult (i.e., NP-complete) to find a setS that is an MWSS
in G [S ∪N (S)] , whereas all the other reductions dis-
cussed so far in this section can be found in polynomial
time.
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3.3. Contraction Reductions

Let the contraction of V ′ ⊆ V be defined as the
graph obtained fromG by replacingV ′ with a single
node that is connected to every node inN(V ′). If it is
possible to predict how the contraction changes the op-
timal value of the MWSS problem, then the problem
of finding an MWSS inG can be reduced to finding an
MWSS in the contraction ofV ′. The best-known con-
traction for the MSS problem works on nodes of degree
two. Supposed(u) = 2 and the two neighbors ofu,
sayv andw, are not adjacent (if they are adjacent, then
u is simplicial). Suppose also thatS is an MSS. IfS
contains exactly one ofv, w, then it can be transformed
into an MSS that includesu. Thus, either there is an
MSS that containsu or an MSS that containsN(u).
The contraction of nodeu is defined as the graphG′

obtained fromG by replacingu andN (u) with a sin-
gle node that is connected to every node inN2(u). It is
easy to see thatα(G′) = α(G)− 1. The contraction of
nodes of degree two has been used in many theoretical
exact algorithms (e.g., [7,14,44]). This contraction has
also played a fundamental role in analyzing the struc-
ture of stability critical graphs and facets of the stable
set polytope (e.g., [21–23,38,41]). This contraction is a
special case of the struction operation defined in [1,15].

The contraction of a node of degree two can be gen-
eralized in two different ways. First, this type of con-
traction can be extended to the weighted case, as long
as the weight of the node of degree two is greater than
or equal to the weight of at least one of its neighbors.
Proposition 7 Supposeu is a node of degree two,
N(u) = {v, w} are the neighbors ofu, (v, w) /∈ E,
andbv ≤ bw.

(1) If bv ≤ bu ≤ bw, thenαb′(G
′) = αb(G) − bu,

whereG′ is the graph obtained fromG by deleting
u, connectingv to every node inN(w), and letting
b′ = b, exceptb′w = bw − bu.

(2) If bw < bu < bv+bw, thenαb′(G
′) = αb(G)−bu,

whereG′ is the graph obtained fromG by deleting
u andw, connectingv to every node inN(w), and
letting b′ = b, exceptb′v = bv − (bu − bw).

(3) If bv+bw ≤ bu, thenαb(G
′) = αb(G)−bu, where

G′ is the graph obtained fromG by deletingu, v,
andw.

Proof.
(1) Becausebu ≥ bv, then there exists an MWSSS

such that eitherS containsu or w. Hence the in-
equalityxu + xw ≥ 1 can be added to BIP2 with-
out changing its optimal value. LetC = {(u,w)}

andB = (V, ∅, C,E). First, closeB, which re-
sults in adding all possible edges betweenv and
N(w). Next apply Reduction (4) from Table 1,
which deletesu and reduces both the optimal value
andbw by bu.

(2) First,G can be reduced in the same manner as de-
scribed in case (1), except nodew rather than node
u is deleted, becausebw < bu. Nodeu has degree
one in the resulting graph, so it is simplicial. Con-
sequently, Proposition3 can be applied to delete
u and to reduce the weight ofv by bu − bw.

(3) In this case,u is an MWSS in{u}∪N(u), so The-
orem 5 implies thatu is contained in an MWSS.
Henceu and its neighbors can be deleted fromG.

Note that if bu = bv = bw = 1, then the reduction
specified by Proposition 7(1) is precisely the same as
the contraction of nodeu. The proof of Proposition 7(1)
demonstrates that contracting a node of degree two can
be viewed as a GSSP reduction.

The second way that the contraction of a node of
degree two can be generalized is to notice thatσ(u) =
1 wheneveru is a node of degree two. We need the
following theorem to achieve this generalization.
Theorem 8 SupposeS is a stable set such thatσb(S) =
k for somek ≥ 0 and σb(S

′) ≥ k for all nonempty
subsetsS′ ⊆ S. Then there exists an MWSSI such that
eitherS ⊆ I or I ∩ S = ∅.
Proof. If I ∩ S = ∅, then there is nothing to prove, so
let I be an MWSS such thatI ∩S 6= ∅. Let IS = I ∩S
andIN = I ∩N(S). Then

b(I ∩ (S ∪N(S))) = b(IS) + b(IN )

≤ b(N(IS))− k + b(IN )

≤ b(N(S))− k

= b(S).

The first inequality holds becauseσb(IS) ≥ k implies
b(N(IS)) − b(IS) ≥ k. The second inequality holds
becauseIN ⊆ N(S) and IN ∩ N(IS) = ∅ (sinceI
is a stable set). Therefore,S ∪ I\IN is an MWSS that
containsS.

Theorem 8 yields another useful reduction. Recall
that the contraction ofV ′ ⊆ V is defined as the graph
obtained fromG by replacingV ′ with a single node
that is connected to every node inN(V ′).
Corollary 9 SupposeS is a stable set such that
σb(S) = k for somek ≥ 0 and σb(S

′) ≥ k for all
nonempty subsetsS′ ⊆ S. Let G′ be the graph ob-
tained by contractingS to a single node, says, and let
bs = b(S). Thenαb(G

′) = αb(G).
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Proof. The proof begins by showing thatαb(G) ≥
αb(G

′). Every MWSS inG′ can be transformed into a
stable set inG of equal weight. To see this, letI ′ be an
MWSS inG′. If s ∈ I ′, thenI = S ∪ I ′\{s} is a stable
set inG andb(I) = b(I ′). If s /∈ I ′, thenI ′ is stable
in G. In either case,I ′ has been transformed into a sta-
ble I in G with weight b (I) , henceαb(G) ≥ αb(G

′).
Conversely, letI be an MWSS inG. Theorem 8 implies
that it can be assumed that eitherS ⊆ I or I ∩ S = ∅.
If S ⊆ I, then I ′ = {s} ∪ I\S is a stable set inG′

andb(I ′) = b(I). If I ∩ S = ∅, thenI is a stable set in
G′. In either case,I has been transformed into a stable
set inG′ with weight b (I) , henceαb(G) ≤ αb(G

′).
Thereforeαb(G

′) = αb(G).

Theorem 8 is used now to prove a reduction that
generalizes the contraction of a node of degree two.
Theorem 10 SupposeS is a stable set such that
σb(S) = k, wherek = minv∈N(S) bv, and σ(S′) ≥
k for all nonempty subsetsS′ ⊆ S.

(1) If N(S) is stable, thenαb(G
′) = αb(G) − b(S),

whereG′ is the graph obtained by contractingS∪
N(S) to a single node, says, andbs = k.

(2) If N(S) is not stable, thenαb(G
′) = αb(G) −

b(S), whereG′ is the graph obtained by deleting
S ∪N(S).

Proof. We want to show that there exists an MWSSI
such that eitherS ⊆ I or N(S) ⊆ I. According to
Theorem 8, there exists an MWSSI such that either
S ⊆ I or I ∩ S = ∅. If b(I ∩ (S ∪ N(S))) ≤ b(S),
thenI can be transformed into an MWSS that contains
S. Furthermore, the proof of Theorem 8 demonstrates
that if I ∩ S 6= ∅, then b(I ∩ (S ∪ N(S))) ≤ b(S).
Thus, we can assume without loss of generality that
S ⊆ I if and only if b(I ∩ (S ∪ N(S))) ≤ b(S). But
σb(S) = b(N(S)) − b(S) = k implies b(N(S)) =
b(S) + k. Sincek = minv∈N(S) bv, then the only way
thatb(I ∩ (S ∪N(S))) > b(S) can occur is ifN(S) ⊆
I. Therefore, eitherS ⊆ I or N(S) ⊆ I. Clearly, if
N(S) is not stable, thenI cannot containN(S), and
hence it must containS. In this case,S is contained in
an MWSS, thus justifying the reduction in case (2). If
N(S) is stable, then the proof of case (1) is completed
in a manner similar to the proof of Corollary 9.

For the MSS problem, ifS is a stable set, thenσ(S) =
|N(S)|−|S| , so Theorem 10 implies that ifS is a stable
set such thatσ(S) = 1 andσ(S′) ≥ 1 for all nonempty
subsetsS′ ⊆ S, then eitherS∪N(S) can be contracted
(if N(S) is stable) orS∪N(S) can be deleted (ifN(S)
is not stable). This generalizes the case of a node of
degree two. Theorem 4 and the discussion following

it describe how reductions can be performed to ensure
that σ(S) > 0 (i.e., σ(S) ≥ 1) for every nonempty
stable setS. This implies that the conditionσ(S′) ≥ 1
for all nonempty subsetsS′ of S is satisfied. Theorem
10 can then be used to perform reductions that ensure
σ(S) > 1 (i.e., σ(S) ≥ 2) for every nonempty stable
setS.

4. Probing

Probing is a method that attempts to find relationships
between binary variables by temporarily fixing one vari-
able to either zero or one. In this section we show how
to obtain stronger reductions for the MWSS problem by
combining probing techniques together with the reduc-
tions given in Section 3. and reductions for GSSP. The
basic idea is that we probe on a node, sayu, by trying
to put it in an MWSS or by trying to exclude it from
an MWSS. We then use the reductions from Section 3.
to derive additional binary constraints betweenu and
other nodes in the graph. These additional binary con-
straints are added to BIP2, which can then be closed and
reduced to (possibly) yield stonger reductions for the
original graph. Throughout this section, letG = (V,E)
be a graph andb ≥ 0 be a nonnegative weighting of the
nodes ofG.

As a simple example, suppose(u, v) ∈ E andu is
simplicial inG− v. Such a node will be callednearly-
simplicial. If v is not in any MSS, then every MSS must
be contained inG−v. But there exists an MSS inG−v
that containsu, sinceu is simplicial inG−v. Thus, the
constraintxu + xv ≥ 1 can be added to BIP2 without
changing the optimal value. The corresponding bigraph
can be closed and reduced (using Reduction (4) from
Table 1, which deletesu andv (and any nodes adjacent
to bothu and v). Notice that these reductions cannot
be obtained directly from any of the reductions given
in Section 3.

The reductions given in Section 3 will be referred to
asdirect reductions.The In-Probe algorithm is given in
Figure 1. The parameters of the algorithm are a closed,
reduced bigraphB = (V,A,C,E) (together with its
integer programming representation BIP2), a setR of
direct reductions for the MSS or MWSS problem, and
a nodeu on which to probe. The algorithm begins by
temporarily fixingxu = 1, temporarily fixing any other
variables in BIP2 that must be zero wheneverxu is one,
and temporarily fixing any other variables that must be
one wheneverxu is one. The direct reductions inR are
then applied to the free variables (i.e., not temporarily
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fixed). If the direct reductions find a variablexv that can
be set to zero, then the inequalityxu + xv ≤ 1 can be
added to BIP2. Similarly, if the direct reductions find a
variablexv that can be set to one, then the inequality
xu ≤ xv can be added to BIP2. Finally, if any inequal-
ities have been added to BIP2, thenB can be closed
and reduced, possibly resulting in a reduction for the
original problem.

In-Probe(B, R, u)
// B = (V,A,C,E) is a closed reduced bigraph (BIP2
corresponds toB)
// R is a set of direct reduction techniques
// u ∈ V
xu = 1
xv = 0 ∀v ∋ (u, v) ∈ E
xv = 1 ∀v ∋ (u, v) ∈ A
Let V ′ be the set of nodes inV that have not been
temporarily fixed to 0 or 1
Apply the reductions inR to the bigraph induced byV ′

Let V ′

0 be the set of nodes fixed to 0 by the reduc-
tions inR

Let V ′

1 be the set of nodes fixed to 1 by the reduc-
tions inR
For all v ∈ V ′

0 add(u, v) to E
For all v ∈ V ′

1 add(u, v) to A
Close and reduceB = (V,A,C,E)

Fig. 1. The In-Probe Algorithm.

Example 11 Consider a graph which contains the sub-
graph induced by{t} ∪N(t) ∪N2(t) shown in Figure
2. If an in-probe is performed on nodet, thenu andw
will be in an MSS inG − t − N(t), because the sta-
ble set{u,w} satisfies the conditions of Theorem 10(2).
Henceyi, i = 1, . . . , 5, will be excluded, which means
that (t, yi) can be added toE for i = 1, . . . , 5. After
these edges have been added,t is dominated byv, so t
can be eliminated. Now an in-probe onv implies that
u is in an MSS inG − t − v − N(v), because it is
simplicial. This in turn implies thatw can also be in-
cluded in the MSS inG − t − v − N(v), since it has
degree one. Hence the in-probe onv adds(v, u) and
(v, w) to A. An in-probe onu adds(u, v) to A, and an
in-probe onw adds(w, v) to A. Reduction (3) from Ta-
ble 1 can be applied (after closing the bigraph), which
identifies nodesu, v, andw, with weight three. The re-
sulting subgraph is shown in Figure 3. Theorem 10(2)
implies that there is an MSS that containsv if y1, y4, or
y5 is deleted, hence(v, y1), (v, y4), and(v, y5) can be
added toC. When the resulting bigraph is closed and

reduced, the only nodes from the subgraph that will re-
main arey2 and y3, with all possible edges added be-
tween{y2} ∪ {y3} andN(y1)∪ N(y4) ∪ N(y5). The
weights of all the nodes will be one.

The Out-Probe algorithm, shown in Figure 4, is sim-
ilar to the In-Probe algorithm, except that the nodev on
which we probe hasxv temporarily fixed to zero.

Out-Probe(B, R, v)
// B = (V,A,C,E) is a closed reduced bigraph (BIP2
corresponds toB)
// R is a set of direct reduction techniques
// v ∈ V
xv = 0
xu = 0 ∀u ∋ (u, v) ∈ A
xu = 1 ∀u ∋ (u, v) ∈ C
Let V ′ be the set of nodes inV that have not been
temporarily fixed to 0 or 1
Apply the reductions inR to the bigraph induced byV ′

Let V ′

0 be the set of nodes fixed to 0 by the reduc-
tions inR

Let V ′

1 be the set of nodes fixed to 1 by the reduc-
tions inR
For all u ∈ V ′

0 add(u, v) to A
For all u ∈ V ′

1 add(u, v) to C
Close and reduceB = (V,A,C,E)

Fig. 4. The Out-Probe Algorithm.

Example 12 Consider a graph which contains the sub-
graph induced by{t}∪N(t)∪N2(t) shown in Figure 5.
If an out-probe is performed on nodet, thenu, v, andw
will all be in an MSS inG− t, because they are simpli-
cial in G−t. Consequently,(t, u), (t, v), and(t, w) can
all be added toC. When the bigraph is closed and re-
duced, the subgraph in Figure 5 will be replaced by the
subgraph in Figure 6, wherev now has weightbv = 2.

It is important to distinguish between direct reduc-
tions that directly set a variable to zero or one, such as
the first two reductions given in Table 1, and those that
do not directly set a variable to zero or one, such as the
last two reductions given in Table 1 and the contraction
reductions. Reductions of the latter type essentially de-
lay the decision about the value of a variable by using
a substitution of variables. For example, Reduction (3)
from Table 1 uses the substitutionxu = xv to delay
the decision regarding the value ofxv. Similarly, the
contraction of a node of degree two, say nodeu with
neighborsv andw, delays the decision about whether
u is in the MSS or bothv andw are in it. For purposes
of probing, reductions of both type may be used during
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Fig. 2. Induced subgraph containingt ∪N(t) ∪N2(t).

Fig. 3. The subgraph from Figure 2 after performing in-probes on nodest, v, u, andw.

Fig. 5. Subgraph induced by{t}
⋃

N(t)
⋃

N2(t).

the probe, butV ′

0 andV ′

1 must include only variables
that have been fixed at zero or one. In particular, nodes
eliminated by the following reductions should not be in-
cluded inV ′

0 andV ′

1 : Proposition 3 regarding weighted
simplicial nodes, contraction of nodes of degree two for
the MSS problem, parts (1) and (2) of Proposition 7 re-
garding contraction of weighted nodes of degree two,
Corollary 9 regarding the contraction of a stable set, and
part (1) of Theorem 10 regarding the contraction of a

stable set and its neighbors.

4.1. Computational Results

Computational experiments for MSS problems were
executed on a 2.0 GHz, dual core, Intel T7200 proces-
sor with 3.25 GB of memory. The algorithm was imple-
mented in the C++ programming language. The code
was not parallelized, so it only utilized one of the two
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Fig. 6. Subgraph from Figure 5 after performing an out-probeon nodet.

cores. The algorithm, called the Reduction-Probe Algo-
rithm (RPA), repeatedly searches for direct reductions
until it is no longer able to add any new edges or fix
any additional nodes. After the direct reductions, it per-
forms an in-probe on each node and then performs an
out-probe on each node. Probing is repeated until it is
no longer able to add any new edges or fix any addi-
tional nodes.

The power of probing reductions is illustrated on
the DIMACS Benchmark graphs, which were collected
for the Second DIMACS Implementation Challenge
on Clique, Graph Coloring, and Satisfiability1 . RPA
was run on all the Dimacs Benchmark graphs; Table
2 presents the results for the graphs for which RPA
was able to fix any variables or add any new edges. In
Table 2, Nodes is the number of nodes in the original
graph, Fixed is the number of variables fixed, New
Edges is the number of new edges found, and CPU is
the running time, in seconds.

Table 2 compares RPA to PrePro, which is a prepro-
cessing algorithm for unconstrained quadratic binary
optimization (QUBO) problems that was developed by
Boros, Hammer, and Tavares [9]. They formulated the
MSS problem as a QUBO and then applied PrePro to
the DIMACS Benchmark graphs. Table 2 presents the
results for the graphs for which PrePro was able to fix
any variables or add any new edges. For PrePro, the
number of New Edges reported in Table 2 is the num-
ber of new edges in the graph after all fixed variables
have been removed, whereas New Edges for RPA equals
all the new edges found for the original graph. There-
fore, these two columns are only directly comparable
for graphs where no variables were fixed by PrePro.

Both RPA and PrePro were able to fix all the vari-
ables for the c-fat graphs and the hammingx-2 graphs.

1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/clique

RPA was able to fix some of the variables for the four
mann graphs, whereas PrePro was unable to do so. Fur-
thermore, RPA was able to add some edges to nine other
graphs for which PrePro was unable to do so. In terms
of execution times, RPA was run on a 2.0 GHz pro-
cessor while PrePro was run on a 2.8 GHz processor.
RPA was faster than PrePro for all the graphs. For the
c-fat500 graphs, it was roughly two orders of magnitue
faster. In comparing the performance of RPA to Pre-
Pro, it should be kept in mind that RPA was designed
specifically for the MSS problem while PrePro was de-
signed for the more general QUBO problem, which in-
cludes the MSS problem as a special case. Therefore, it
is somewhat like comparing apples to oranges, and it is
not surprising that RPA is able to find more reductions
and that it requires less CPU.

Boros et al [9] also reported the results of applying
PrePro to a series of planar graphs that were generated
by the LEDA software package. Table 3 compares the
performance of RPA to PrePro on these graphs. Each
line in the table presents the average for 100 graphs.
Both algorithms were able to fix all the variables for all
the graphs. RPA is roughly 20 to 40 times faster than
PrePro on these graphs.

Table 3

RPA PrePro
New

Nodes Fixed Edges CPU Fixed CPU
1,000 1,000 10.63 0.0012 1,000 0.05
2,000 2,000 29.60 0.0069 2,000 0.16
3,000 3,000 47.77 0.0085 3,000 0.27
4,000 4,000 108.30 0.0220 4,000 0.53

LEDA planar graphs.

The order in which the probing is performed can
make a difference in the number of variables that are
fixed and the number of edges that are added. The re-
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Table 2

RPA PrePro
New* New*

Graph Nodes Fixed Edges CPU Fixed Edges CPU
c-fat200-1 200 200 21,433 0.20 200 0 21.1
c-fat200-2 200 200 23,134 0.14 200 0 17.4
c-fat200-5 200 200 28,372 0.13 200 0 3.7
c-fat500-1 500 500 129,208 2.17 500 0 677.0
c-fat500-2 500 500 133,888 2.16 500 0 377.1
c-fat500-5 500 500 147,940 2.16 500 0 166.2
c-fat500-10 500 500 171,376 2.05 500 0 89.5
hamming6-2 64 64 0 0.00 64 0 0.0
hamming8-2 256 256 0 0.00 256 0 0.0
hamming10-2 1,024 1,024 0 0.00 1,024 0 0.1
hamming6-4 64 0 224 0.05 0 0 0.1
hamming8-4 256 0 0 1.38 0 0 8.9
hamming10-4 1,024 0 0 84.88 0 0 265.4
manna9 45 14 192 0.01 - - -
manna27 378 76 3,460 1.55 - - -
manna45 1,035 184 15,319 16.88 - - -
manna81 3,321 583 87,828 285.45 - - -
p hat300-1 300 0 74 10.98 - - -
p hat300-2 300 0 31 5.99 - - -
p hat500-1 500 0 6 36.25 - - -
p hat500-2 500 0 4 30.19 - - -
p hat700-1 700 0 1 146.17 - - -
san2000.7 2 200 0 66 1.08 - - -
san4000.5 1 400 0 2,776 21.63 - - -
san1000 1,000 0 1,989 422.17 - - -

DIMACS Benchmark Problems. *New Edges for the RPA equals allthe new edges
found for the original graph. New Edges for PrePro equals thenumber of new
edges in the graph after all fixed variables have been removed. A dash indicates
that [9] did not present results because PrePro was unable tofix any variables or
add any new edges.

sults presented above are based on performing the in-
probes before the out-probes. For the DIMACS Bench-
mark graphs, the results were identical except for the
mann graphs. For the mann graphs, substantially more
variables were fixed by performing the out-probes be-
fore the in-probes. As shown in Table 4, RPA was able
to reduce the number of nodes by approximately 33%
on these challenging problems. It should be noted that
these graphs cannot be reduced by any of the direct re-
duction techniques given in Section 3.

5. Clique Projections and Hypergraphs

The reductions in the previous sections all trans-
formed a stable set problem on a graph into another sta-
ble set problem on a smaller graph in such a way that

Table 4

Graph Nodes Fixed New Edges CPU
manna9 45 14 192 0.2
manna27 378 121 6,084 1.53
manna45 1,035 332 29,040 18.30
manna81 3,321 1,088 172,800 338.47

RPA with out-probes before in-probes applied to Mann graphs.

the problem could still be formulated as a binary inte-
ger program with two variables per inequality. In this
section we extend a reduction technique, called clique
projection, in such a way that it creates constraints with
more than two variables per inequality, and illustrate
the power of this reduction technique on the Steiner
Triples Systems graphs. Throughout this section, let
G = (V,E) be a graph andb ≥ 0 be a nonnegative



50 E. C. Sewell et al. – Reductions for the Stable Set Problem

weighting of the nodes ofG.

A short review of clique projections is first presented.
Lovász and Plummer [23] introduced reducible cliques
as part of a polynomial time algorithm to find an MSS
in a claw-free graph. They defined a maximal cliqueK
contained inG to be reducible if α(G[N(K)]) ≤ 2,
and reducedG by lettingG′ be the graph obtained by
deleting the nodes inK and adding an edge (if not
already present) between every pair of nodesu andv
such thatK ⊆ N(u) ∪ N(v). If K is reducible, then
α(G′) = α(G)− 1. De Simone and Sassano [43] used
an extension of this reduction, which was developed by
Sassano [36], to create a polynomial-time algorithm to
find an MSS in a bull-free chair-free graph.

Mannino and Sassano [25] introduced edge projec-
tions as a specialization of Lovász and Plummer’s [23]
reduction. Lete = (u, v) ∈ E. DefineNuv = N(u) ∩
N(v), Nu = N(u) − Nuv − {v}, andNv = N(v) −
Nuv − {u}. Theedge projection ofe is the graph ob-
tained fromG by deleting{u}∪{v}∪Nuv and adding
edges to ensure that every node inNu is adjacent to ev-
ery node inNv. In the case thatu is a node of degree
two and is not simplicial, the edge projection ofe cre-
ates the same graph as contractingu (as defined in the
first paragraph of Section 3.3.). They also developed an
upper bound forα(G) based on edge projections, and
incorporated the upper bound into a branch and bound
algorithm to produce a fast, practical exact algorithm
for the MSS problem.

Mannino and Stefanutti [26] generalized edge projec-
tions to the weighted case as follows. Lete = (u, v) ∈
E andbe = min(bu, bv). Theweighted edge projection
of e is the graph obtained fromG by subtractingbe from
both bu andbv, deleting the nodes inNuv, deletingu
if its new weight is zero, deletingv if its new weight is
zero, and adding edges to ensure that every node inNu

is adjacent to every node inNv. They created a heuris-
tic for the MWSS problem by embedding a sequence
of edge projections in a tabu search.

Both the unweighted and weighted edge projections
are special cases of closing and reducing a bigraph.
From the graphG = (V,E) create a bigraphB =
(V, ∅, C,E), whereC = {e} = {(u, v)} is the edge
to be projected. Next close and reduceB to obtain
B′ = (V ′, A′, C′, E′) with weightingb′ and letG′ =
(V ′, E′). It is straightforward to show thatG′ is pre-
cisely the same as the edge projection ofe.

A reduction technique that generalizes reducible
cliques and edge projections is now presented. This
technique creates constraints with more than two

variables per inequality. The new constraints can be
conveniently represented by edges in a hypergraph.
Given a set of nodesV, a hyperedgeis a subset of
V and thehyperedge inequalityfor hyperedgeh is
∑

v∈h xv ≤ |h| − 1. The definition of a stable set
can be extended to a hypergraphH = (V,EH) as a
solution to the integer program:

αb(H) = maxbx

BIP (H, b)
∑

v∈h

xv ≤ |h| − 1 ∀ h ∈ EH

xv ∈ {0, 1} ∀ v ∈ V.

If |h| = 2 for every hyperedgeh ∈ EH , thenH is the
same as the ordinary graphG = (V,EH) and BIP(H, b)
is the same as BIP2 withA = C = ∅. If the incidence
vector ofS ⊆ V is a feasible solution of BIP(H, b) ,
then S will be called a stable set ofH and will be
said to be a feasible solution of BIP(H, b) . Given a
hypergraphH = (V,EH) , the ordinary graphG =
(V,E), whereE is all the hyperedges inEH composed
of exactly two nodes, is defined to be theunderlying
graph of H. Throughout the remainder of this section,
let H = (V,EH) be a hypergraph,G = (V,E) be its
underlying graph (E could be empty), andb ≥ 0 be a
nonnegative weighting of the nodes ofG.

LetK be a clique inG, bK = minv∈K bv, and assume
bK > 0. A set of nodesC ⊆ V \K is a stable cover
of K if C is a stable set inG and for eachu ∈ K,
there existsh ∈ EH such thatu ∈ h and h ⊆ C ∪
{u}. C is aminimal stable cover ofK if C is a stable
cover ofK such thatC\{v} is not a stable cover of
K for all v ∈ C (examples of minimal stable covers
are provided in Example 14). Theprojection of K is
the hypergraphHK obtained fromH by adding all the
hyperedges corresponding to minimal stable covers of
K and lettingb′ be defined as

b′v =

{

bv − bK if v ∈ K
bv otherwise.

Theorem 13 LetK be a clique in the underlying graph
of the hypergraphH = (V,EH) such thatbK > 0. Let
HK be the clique projection ofK.
(1) Every feasible solution of BIP(HK, b′) is con-

tained in a feasible solution of BIP(HK , b′) that
includes a node inK.

(2) If S is a feasible solution of BIP(H, b) such that
S ∩ K 6= ∅, then S is a feasible solution of
BIP(HK , b′) .

(3) αb′(HK) ≤ αb(H)− bK .
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(4) If there exists an optimal solutionS of BIP(H, b)
such thatS ∩K 6= ∅, thenαb′(HK) = αb(H) −
bK .

Proof.
(1) Let S be a feasible solution of BIP(HK , b′) such

that S ∩ K = ∅. For the sake of contradiction,
suppose thatS ∪ {u} is not a feasible solution of
BIP(HK , b′) for eachu ∈ K. Then every node in
K is contained in a hyperedge whose hyperedge
inequality is satisfied at equality by the incidence
vector ofS. ThereforeS is a stable cover ofK.
Create a minimal stable coverC of K from S by
removing nodes, one at a time, untilC is minimal.
But thenS does not satisfy

∑

v∈C xv ≤ |C| − 1,
which contradicts thatS is a feasible solution of
BIP(HK , b′) .

(2) Let S be a feasible solution of BIP(H, b) such
that S ∩ K 6= ∅. Let u be the unique node in
S ∩ K and letC be a minimal stable cover of
K in H. By definition, there existsh ∈ EH such
that u ∈ h and h ⊆ C ∪ {u}. S must satisfy
∑

v∈h xv ≤ |h| − 1, therefore at least one node
in h, sayv, is not inS. But v ∈ C becauseh ⊆
C ∪ {u} (v 6= u becauseu ∈ S but v /∈ S). SoS
satisfies

∑

v∈C xv ≤ |C| − 1. ThusS satisfies all
the constraints in BIP(HK , b′) .

(3) LetS be an optimal solution of BIP(HK , b′) . By
(1), and the fact thatb′ ≥ 0, we can assume that
S ∩K 6= ∅. Let u be the unique node inS ∩K.
Then

αb′(HK) = b′(S) = b′(S\{u}) + b′u
= b(S\{u}) + bu − bK = b(S)− bK

≤ αb(H)− bK ,

where the final inequality follows from the fact
thatS also is a feasible solution of BIP(H, b) .

(4) From part (3), one needs only show that
αb′(HK) ≥ αb(H)− bK . Let S be an optimal so-
lution of BIP(H, b) such thatS ∩K 6= ∅ and letu
be the unique node inS ∩K. Part (2) implies that
S is a feasible solution of BIP(HK , b′) . Therefore

αb′(HK) ≥ b′(S) = b′(S\{u}) + b′u
= b(S\{u}) + bu − bK

= b(S)− bK = αb(H)− bK .

To explain how Theorem 13 can be used to reduce a
graph, supposeK is a clique in the underlying graphG
and that there exists an optimal solutionS of BIP(H, b)
such thatS∩K 6= ∅ (refer to such a clique asreducible).

This definition of reducible differs from the one given
by Lovász and Plummer [23], but it generalizes the
desired property of the clique fromα(G′) = α(G)− 1
to αb′(HK) = αb(H) − bK . Furthermore, any node
v that hasb′v = 0 can be deleted fromHK because
every inequality in BIP(HK , b′) has only nonnegative
coefficients. Moreover, every hyperedge that containsv
can be deleted fromHK , since the corresponding hy-
peredge inequality is redundant afterxv has been set to
zero. The following example illustrates this approach.

Example 14 Consider the graph depicted in Figure 7.
It is straightforward to show that there exists an MSS
that intersectsK1 = {1, 2, 3}. ThusK1 can be deleted
after it has been projected. LetH1 be the projection
of K1. The projection creates the following hyperedge
inequalities:

x4 + x8 + x12 ≤ 2

x4 + x9 + x11 ≤ 2

x5 + x7 + x12 ≤ 2 (1)

x6 + x7 + x11 ≤ 2

x5 + x9 + x10 ≤ 2

x6 + x8 + x10 ≤ 2.

Figure 8 displays the underlying graph ofH1 af-
ter nodes 1, 2, and 3 have been deleted. It can now be
shown that there exists an MSS inH1 that intersects
K2 = {4, 5, 6}.ThusK2 can be deleted by projecting it.
LetH2 be the projection ofK2. The minimal stable cov-
ers ofK2 are{8, 12}, {9, 11}, {7, 12}, {7, 11}, {9, 10},
and {8, 10}. When nodes 4, 5, and 6 are deleted, the
hyperedge inequalities that were added whenK1 was
projected are redundant and can be deleted. ThusH2,
shown in Figure 9 after nodes 4, 5, and 6 have been
deleted, only contains ordinary edges, hence is an or-
dinary graph. In fact,H2 is a clique, so no further re-
ductions are necessary to solve the MSS problem.

For the graph in Figure 7, it also is possible
to begin the reduction by projecting the clique
K ′

1 = {1, 4, 7, 10} . There are no stable covers ofK ′

1,
so projectingK ′

1 is the same as deleting it. OnceK ′

1

has been projected, then the cliqueK ′

2 = {2, 5, 8, 11}
can be projected. There are no stable covers ofK ′

2,
so projecting it is the same as deleting it. The remain-
ing nodes,{3, 6, 9, 12} form a clique, so no further
reductions are necessary to solve the MSS problem.

When a reducible cliqueK is projected, it may be
possible to eliminate nodes outside ofK. If node v ∈
V \K is adjacent to every node inK in the underlying
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Fig. 7. Graph for Example 13.

Fig. 8. The underlying graph ofH1 afterK = {1, 2, 3} has been projected and deleted.

Fig. 9.H2: The graph afterK1 = {1, 2, 3} andK2 = {4, 5, 6} have been projected and deleted.

graphG, thenv is a minimal stable cover ofK. Hence
the inequalityxv ≤ 0 is placed in BIP(HK , b′) , which
means thatv can be eliminated. This corresponds to
deletingNuv when performing an edge projection on
e = (u, v) . Consequently, ifK ′ ⊆ K is also reducible,
then at least as many nodes will be eliminated by pro-
jectingK ′ as by projectingK.

Reducible cliques, as defined by Lovász and Plummer
[23] and edge projections, as defined by Mannino and

Sassano [25] and Mannino and Stefanutti [26] in the
weighted case, are special cases of the clique projection
defined here. SupposeK is a maximal clique in a graph
G = (V,E) andα(G[N(K)]) ≤ 2. K cannot have a
minimal stable cover of size one becauseK is maximal,
and it cannot have a minimal stable cover of size greater
than two becauseα(G[N(K)]) ≤ 2. Hence projecting
K will create an edge (if not already present) between
every pair of nodesu andv such thatK ⊆ N(u)∪N(v).
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Furthermore, since every node has weight one, every
node inK will have weight zero after the projection,
hence can be deleted. Therefore, projectingK results
in the same graph as defined by Lovász and Plummer.
Now let e = (u, v) ∈ E and defineNuv, Nu, and
Nv the same as Mannino and Sassano. Projecting the
cliqueK = e will eliminate the nodes inNuv because
each of these nodes are a minimal stable cover of size
one, as discussed above. Every other minimal stable
cover is of the form{w, y}, wherew ∈ Nu andy ∈
Nv. Hence the projection will add an edge between
every such pair of nodes. Furthermore, the weights of
the nodes are modified in precisely the same manner.
Consequently, projectingK results in the same graph
as the edge projection ofe, as defined in [25,26].

In general it is a difficult problem to determine if a
clique is reducible. (If deciding reducibility of an arbi-
trary clique can be done in polynomial time, then de-
ciding whether or not a nodeu is contained in an MSS
can be done in polynomial time, which would yield a
polynomial time algorithm for the MSS problem.) The
following theorem gives two different sets of sufficient
conditions that can be used to determine if a given clique
is reducible.

Theorem 15 LetK be a clique in the underlying graph
G = (V,E) of hypergraphH = (V,EH).

(1) If K does not have any stable covers inH, then
K is reducible.

(2) Supposeu ∈ K, N ′ (H,u)
= {v ∈ V \K : ∃h ∈ EH ∋ {u, v} ⊆ h} , and
Hu is the hypergraph induced byN ′ (H,u) . If
bu ≥ αb(Hu), thenK is reducible.

Proof.

(1) Since K does not have any stable covers,
the only difference between BIP(H, b) and
BIP(HK , b′) is the objective function, i.e., no con-
straints have been added to BIP(H, b) to obtain
BIP(HK , b′) . Therefore, ifS is an optimal solu-
tion of BIP(H, b) , then S is a feasible solution
of BIP(HK , b′) . Thus, Theorem 13(1) implies
that S is contained in a feasible solutionS′ of
BIP(HK , b′) that includes a node inK. Clearly,
S′ also is a feasible solution of BIP(HK , b) and
b (S′) ≥ b (S) . Hence every optimal solution of
BIP(H, b) is contained in an optimal solution that
intersectsK. Therefore,K is reducible.

(2) LetS be an optimal solution of BIP(H, b) such that
S ∩K = ∅. The setS′ = (S\N ′ (H,u))∪ {u} is
also a feasible solution of BIP(H, b) .Furthermore,

b (S′) = b ((S\N ′ (H,u)) ∪ {u})

= b(S\N ′ (H,u)) + bu

= b(S)− b(S ∩N ′ (H,u)) + bu

≥ b(S)− αb(Hu) + bu ≥ b (S) = αb(H),

soS′ is an optimal solution of BIP(H, b) that in-
tersectsK. Therefore,K is reducible.

The graph in Figure 8 has a cliqueK = {1, 4, 7, 10}
that does not have any stable covers. So Theorem 15(1)
implies thatK is reducible. All three triangles in the
graph in Figure 5 satisfy the conditions of Theorem
15(2), so they are all reducible.

A Steiner Triple Systemconsists of a setD =
{1, 2, ..., n} and a collection of triples, which are sub-
sets ofD of size three, such that every pair of elements
in D is contained in exactly one triple. Fulkerson et al.
[17] created two computationally difficult set covering
problems arising from Steiner Triple Systems. Subse-
quently, these problems were converted into equivalent
MSS problems, and several more problems of the same
type were generated. Four such problems were included
in the benchmark graphs for the Second DIMACS Im-
plementation Challenge on Clique, Graph Coloring,
and Satisfiability. These problems have indeed proven
to be difficult. To date, no exact stable set algorithm has
been able to directly solve the largest such problem,
mann81, although Mannino and Sassano [25] were
able to solve it indirectly.

The power of clique projections is illustrated on
these challenging problems. As shown in Table 5, the
clique projections produce a large reduction in both the
number of nodes (variables) and edges (constraints).
These reductions were obtained by using Theorem
15(2) to project all the triangles, which correspond to
the Steiner triples, in the graph.
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Table 5

Number of Nodes Number of Edges
Graph Originally After Projections Originally After Projections
manna9 45 9 72 12
manna27 378 27 702 117
manna45 1,035 45 1,980 330
manna81 3,321 81 6,480 1,080

Clique Projections Applied to MSS Problems Arising from Steiner Triple Systems.
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