71 research outputs found

    The performance limits of epigraphene Hall sensors

    Get PDF
    Epitaxial graphene on silicon carbide, or epigraphene, provides an excellent platform for Hall sensing devices in terms of both high electrical quality and scalability. However, the challenge in controlling its carrier density has thus far prevented systematic studies of epigraphene Hall sensor performance. In this work we investigate epigraphene Hall sensors where epigraphene is doped across the Dirac point using molecular doping. Depending on the carrier density, molecular-doped epigraphene Hall sensors reach room temperature sensitivities SV=0.23V/VTS_V=0.23 V/VT,SI=1440V/ATS_I=1440 V/AT and magnetic field detection limits down to BMIN=27B_{MIN}=27 nT/HznT/\sqrt{Hz} at 20 kHz. Thermally stabilized devices demonstrate operation up to T=150T=150 oC^oC with SV=0.12V/VTS_V=0.12 V/VT, SI=300V/ATS_I=300 V/AT and BMIN100B_{MIN}\approx 100 nT/HznT/\sqrt{Hz} at 20 kHz

    Atherosclerosis of the iliac arteries for the prediction of erectile dysfunction and epistaxis in men undergoing abdominal CT scan

    Get PDF
    BACKGROUND: To investigate the association between erectile dysfunction (ED) as well as epistaxis (ES) in relation to the extent of iliac atherosclerosis. METHODS: In this retrospective cross-sectional study, all consecutive male patients treated at our institution from 01/2016 to 12/2020 undergoing abdominal CT scan were evaluated. Patients (n = 1272) were invited by mail to participate in the study in returning two questionnaires for the evaluation of ED (IIEF-5) and ES. Patients who returned filled-in questionnaires within a 3-month deadline were included in the study. The extent of atherosclerosis in the common iliac artery (CIA) and the internal iliac artery (IIA) was assessed by calcium scoring on unenhanced CT. Stratification of results was performed according to reported IIEF-5 scores and consequential ED groups. RESULTS: In total, 437 patients (34.4% of contacted) met the inclusion criteria. Forty-two patients did not fulfill predefined age requirements (< 75 years) and 120 patients had to be excluded as calcium scoring on nonenhanced CT was not feasible. Finally, 275 patients were included in the analysis and stratified into groups of "no-mild" (n = 146) and "moderate-severe" (n = 129) ED. The calcium score (r=-0.28, p < 0.001) and the number of atherosclerotic lesions (r=-0.32, p < 0.001) in the CIA + IIA showed a significant negative correlation to the IIEF-5 score, respectively. Patients differed significantly in CIA + IIA calcium score (difference: 167.4, p < 0.001) and number of atherosclerotic lesions (difference: 5.00, p < 0.001) when belonging to the "no-mild" vs. "moderate-severe" ED group, respectively. A multivariable regression model, after adjusting for relevant baseline characteristics, showed that the number of atherosclerotic CIA + IIA lesions was an independent predictor of ED (OR = 1.05, p = 0.036), whereas CIA + IIA calcium score was not (OR = 1.00031, p = 0.20). No relevant correlation was found between ES episodes and IIEF-5 scores (r=-0.069, p = 0.25), CIA + IIA calcium score (r=-0.10, p = 0.87) or number of atherosclerotic CIA + IIA lesions (r=-0.032, p = 0.60), respectively. CONCLUSIONS: The number of atherosclerotic lesions in the iliac arteries on nonenhanced abdominal CT scans is associated with the severity of ED. This may be used to identify subclinical cardiovascular disease and to quantify the risk for cardiovascular hazards in the future

    Critical Role of Methylglyoxal and AGE in Mycobacteria-Induced Macrophage Apoptosis and Activation

    Get PDF
    Apoptosis and activation of macrophages play an important role in the host response to mycobacterial infection involving TNF-α as a critical autocrine mediator. The underlying mechanisms are still ill-defined. Here, we demonstrate elevated levels of methylglyoxal (MG), a small and reactive molecule that is usually a physiological product of various metabolic pathways, and advanced glycation end products (AGE) during mycobacterial infection of macrophages, leading to apoptosis and activation of macrophages. Moreover, we demonstrate abundant AGE in pulmonary lesions of tuberculosis (TB) patients. Global gene expression profiling of MG-treated macrophages revealed a diverse spectrum of functions induced by MG, including apoptosis and immune response. Our results not only provide first evidence for the involvement of MG and AGE in TB, but also form a basis for novel intervention strategies against infectious diseases in which MG and AGE play critical roles

    Anisotropic topographies restore endothelial monolayer integrity and promote the proliferation of senescent endothelial cells

    Full text link
    Thrombogenicity remains a major issue in cardiovascular implants (CVIs). Complete surficial coverage of CVIs by a monolayer of endothelial cells (ECs) prior to implantation represents a promising strategy but is hampered by the overall logistical complexity and the high number of cells required. Consequently, extensive cell expansion is necessary, which may eventually lead to replicative senescence. Considering that micro-structured surfaces with anisotropic topography may promote endothelialization, we investigated the impact of gratings on the biomechanical properties and the replicative capacity of senescent ECs. After cultivation on gridded surfaces, the cells showed significant improvements in terms of adherens junction integrity, cell elongation, and orientation of the actin filaments, as well as enhanced yes-associated protein nuclear translocation and cell proliferation. Our data therefore suggest that micro-structured surfaces with anisotropic topographies may improve long-term endothelialization of CVIs. Keywords: aging; anisotropy; endothelial cells; monolayer integrity; proliferation; senescence; telomere; topograph

    Acclimation in plants - the Green Hub consortium

    Get PDF
    Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to 'smart breeding' methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast-related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted

    Acclimation in plants – the Green Hub consortium

    Get PDF
    Acclimation is the capacity to adapt to environmental changes within the lifetime of an individual. This ability allows plants to cope with the continuous variation in ambient conditions to which they are exposed as sessile organisms. Because environmental changes and extremes are becoming even more pronounced due to the current period of climate change, enhancing the efficacy of plant acclimation is a promising strategy for mitigating the consequences of global warming on crop yields. At the cellular level, the chloroplast plays a central role in many acclimation responses, acting both as a sensor of environmental change and as a target of cellular acclimation responses. In this Perspective article, we outline the activities of the Green Hub consortium funded by the German Science Foundation. The main aim of this research collaboration is to understand and strategically modify the cellular networks that mediate plant acclimation to adverse environments, employing Arabidopsis, tobacco (Nicotiana tabacum) and Chlamydomonas as model organisms. These efforts will contribute to ‘smart breeding’ methods designed to create crop plants with improved acclimation properties. To this end, the model oilseed crop Camelina sativa is being used to test modulators of acclimation for their potential to enhance crop yield under adverse environmental conditions. Here we highlight the current state of research on the role of gene expression, metabolism and signalling in acclimation, with a focus on chloroplast‐related processes. In addition, further approaches to uncovering acclimation mechanisms derived from systems and computational biology, as well as adaptive laboratory evolution with photosynthetic microbes, are highlighted.Deutsche Forschungsgemeinschaft http://dx.doi.org/10.13039/501100001659Peer Reviewe

    Determination of caspase-3 activation fails to predict chemosensitivity in primary acute myeloid leukemia blasts

    Get PDF
    BACKGROUND: Ex-vivo chemosensitivity tests that measure cell death induction may predict treatment outcome and, therefore, represent a powerful instrument for clinical decision making in cancer therapy. Such tests are, however, work intensive and, in the case of the DiSC-assay, require at least four days. Induction of apoptosis is the mode of action of anticancer drugs and should, therefore, result in the induction of caspase activation in cells targeted by anticancer therapy. METHODS: To determine, whether caspase activation can predict the chemosensitivity, we investigated enzyme activation of caspase-3, a key executioner caspase and correlated these data with chemosensitivity profiles of acute myeloid leukemia (AML) blasts. RESULTS: There was, however, no correlation between the ex-vivo chemosensitivity assessed by measuring the overall rates of cell death by use of the DiSC-assay and caspase-3 activation. CONCLUSION: Thus, despite a significant reduction of duration of the assay from four to one day, induction of apoptosis evaluated by capase-3 activity does not seem to be a valid surrogate marker for chemosensitivity

    Loss of Receptor on Tuberculin-Reactive T-Cells Marks Active Pulmonary Tuberculosis

    Get PDF
    BACKGROUND: Tuberculin-specific T-cell responses have low diagnostic specificity in BCG vaccinated populations. While subunit-antigen (e.g. ESAT-6, CFP-10) based tests are useful for diagnosing latent tuberculosis infection, there is no reliable immunological test for active pulmonary tuberculosis. Notably, all existing immunological tuberculosis-tests are based on T-cell response size, whereas the diagnostic potential of T-cell response quality has never been explored. This includes surface marker expression and functionality of mycobacterial antigen specific T-cells. METHODOLOGY/PRINCIPAL FINDINGS: Flow-cytometry was used to examine over-night antigen-stimulated T-cells from tuberculosis patients and controls. Tuberculin and/or the relatively M. tuberculosis specific ESAT-6 protein were used as stimulants. A set of classic surface markers of T-cell naive/memory differentiation was selected and IFN-gamma production was used to identify T-cells recognizing these antigens. The percentage of tuberculin-specific T-helper-cells lacking the surface receptor CD27, a state associated with advanced differentiation, varied considerably between individuals (from less than 5% to more than 95%). Healthy BCG vaccinated individuals had significantly fewer CD27-negative tuberculin-reactive CD4 T-cells than patients with smear and/or culture positive pulmonary tuberculosis, discriminating these groups with high sensitivity and specificity, whereas individuals with latent tuberculosis infection exhibited levels in between. CONCLUSIONS/SIGNIFICANCE: Smear and/or culture positive pulmonary tuberculosis can be diagnosed by a rapid and reliable immunological test based on the distribution of CD27 expression on peripheral blood tuberculin specific T-cells. This test works very well even in a BCG vaccinated population. It is simple and will be of great utility in situations where sputum specimens are difficult to obtain or sputum-smear is negative. It will also help avoid unnecessary hospitalization and patient isolation
    corecore