16,854 research outputs found

    Asymptotic Stability for a Class of Metriplectic Systems

    Full text link
    Using the framework of metriplectic systems on Rn\R^n we will describe a constructive geometric method to add a dissipation term to a Hamilton-Poisson system such that any solution starting in a neighborhood of a nonlinear stable equilibrium converges towards a certain invariant set. The dissipation term depends only on the Hamiltonian function and the Casimir functions

    Influence of Habitat on Distribution and Abundance of the Eastern Woodrat in Kansas

    Get PDF
    Anthropogenic modification of native woodlands and grasslands in the Great Plains has altered the abundance and distribution of many species of mammals. To study habitat effects on the eastern woodrat (Neotoma floridana), we surveyed nests of the eastern woodrat in woodlands, grasslands, and croplands along 77 km of secondary roads in three counties in north-central Kansas. All nests were located in woodlands ( \u3c 2 %of habitat), although grasslands and croplands constituted 36% and 62% of habitat surveyed, respectively. In our survey, nests were associated positively with shelterbelts (3.6 nests per 100 m of road edge) but not with shrub patches (1.1 nests per 100 m of road edge) or riparian woodlands (0.3 nests per 100 m of road edge). Consequently, we specifically censused nests in an additional 12 riparian woodlands and 12 shelterbelts. Nests of eastern woodrats were less dense in riparian woodlands (9.4 nests/ha) than in shelterbelts (55.5 nests/ha). Density of woodrat nests decreased as width of a wooded area increased. Further, nests per 100 m of length of woodland did not increase as the width of woodland increased. These patterns suggest that woodland edge, not woodland interior, is the primary factor in abundance of eastern woodrats in this region. Although the eastern woodrat has previously been considered a woodland species, our results suggest that this assessment is incorrect. Our observations demonstrate that anthropogenic modification of the Great Plains, in the form of planted shelterbelts and expanded riparian woodland, likely has increased the distribution and abundance of eastern woodrats, compared to the mid-1800s

    Radio-frequency dressing of multiple Feshbach resonances

    Full text link
    We demonstrate and theoretically analyze the dressing of several proximate Feshbach resonances in Rb-87 using radio-frequency (rf) radiation. We present accurate measurements and characterizations of the resonances, and the dramatic changes in scattering properties that can arise through the rf dressing. Our scattering theory analysis yields quantitative agreement with the experimental data. We also present a simple interpretation of our results in terms of rf-coupled bound states interacting with the collision threshold.Comment: 4+ pages, 3 figures, 1 table; revised introduction & references to reflect published versio

    Stochastic dynamics of remote knock-on permeation in biological ion channels

    Get PDF
    Brownian dynamics simulations provide evidence for a remote knock-on mechanism facilitating the permeation of a biological ion channel by an ion that is initially trapped at the selectivity filter (SF). Unlike the case of conventional direct knock-on, the second ion that instigates permeation does not need to enter the channel. Nor does it necessarily take the place of the permeating ion at the SF, and it can even be of a different ionic species. The study is based on the simultaneous, self-consistent, solution of the coupled Poisson and Langevin equations for a simple generic model, taking account of all the charges present. The new permeation mechanism involves electrostatic amplification attributable to the permittivity mismatch between water and protein: the arrival of the instigating ion at the channel entrance reduces the exit barrier for the ion trapped at the SF, facilitating escape

    Self-organized enhancement of conductivity in biological ion channels

    Get PDF
    We discuss an example of self-organization in a biological system. It arises from long-range ion–ion interactions, and it leads us to propose a new kind of enhanced conduction in ion channels. The underlying mechanism involves charge fluctuations near the channel mouth, amplified by the mismatch between the relative permittivities of water and the protein of the channel walls. We use Brownian dynamics simulations to show that, as in conventional 'knock on' permeation, these interactions can strongly enhance the channel current; but unlike the conventional mechanism, the enhancement occurs without the instigating bath ion entering the channel. The transition between these two mechanisms is clearly demonstrated, emphasizing their distinction. A simple model accurately reproduces the observed phenomena. We point out that electrolyte plus protein of low relative permittivity are universal in living systems, so that long-range ion–ion correlations of the kind considered must be common

    Random field Ising systems on a general hierarchical lattice: Rigorous inequalities

    Full text link
    Random Ising systems on a general hierarchical lattice with both, random fields and random bonds, are considered. Rigorous inequalities between eigenvalues of the Jacobian renormalization matrix at the pure fixed point are obtained. These inequalities lead to upper bounds on the crossover exponents {ϕi}\{\phi_i\}.Comment: LaTeX, 13 pages, figs. 1a,1b,2. To be published in PR

    Mid-J CO Shock Tracing Observations of Infrared Dark Clouds I

    Get PDF
    Infrared dark clouds (IRDCs) are dense, molecular structures in the interstellar medium that can harbour sites of high-mass star formation. IRDCs contain supersonic turbulence, which is expected to generate shocks that locally heat pockets of gas within the clouds. We present observations of the CO J = 8-7, 9-8, and 10-9 transitions, taken with the Herschel Space Observatory, towards four dense, starless clumps within IRDCs (C1 in G028.37+00.07, F1 and F2 in G034.43+0007, and G2 in G034.77-0.55). We detect the CO J = 8-7 and 9-8 transitions towards three of the clumps (C1, F1, and F2) at intensity levels greater than expected from photodissociation region (PDR) models. The average ratio of the 8-7 to 9-8 lines is also found to be between 1.6 and 2.6 in the three clumps with detections, significantly smaller than expected from PDR models. These low line ratios and large line intensities strongly suggest that the C1, F1, and F2 clumps contain a hot gas component not accounted for by standard PDR models. Such a hot gas component could be generated by turbulence dissipating in low velocity shocks.Comment: 14 pages, 8 figures, 5 tables, accepted by A&A, minor updates to match the final published versio

    Surface roughness effect on ultracold neutron interaction with a wall and implications for computer simulations

    Get PDF
    We review the diffuse scattering and the loss coefficient in ultracold neutron reflection from slightly rough surfaces, report a surprising reduction in loss coefficient due to roughness, and discuss the possibility of transition from quantum treatment to ray optics. The results are used in a computer simulation of neutron storage in a recent neutron lifetime experiment that re-ported a large discrepancy of neutron lifetime with the current particle data value. Our partial re-analysis suggests the possibility of systematic effects that were not included in this publication.Comment: 39 pages, 9 figures; additional calculations include

    Seasonal Variation in Carcinops pumilio (Coleoptera: Histeridae) Dispersal and Potential for Suppression of Dispersal Behavior

    Get PDF
    Seasonal dispersal of Carcinops pumilio (Erichson) was evaluated using two trapping methods-a black-light pitfall trap and a mesh-bottomed trap placed on poultry manure. The black-light trap collected larger numbers than the mesh-bottomed trap from March through June. The mesh-bottomed trap gathered larger numbers of beetles from June through August and numbers were less variable throughout the year. Often, when very low numbers of beetles were recovered from manure cores, large numbers of beetles could be collected with the black-light trap suggesting that beetle density may not be an important factor in dispersal behavior. The greatest dispersal in the dispersal arenas (≈90%) occurred using beetles collected by both trap types in June 2000. Beginning in March and ending in August, a cyclic rise and then fall pattern in both laboratory dispersal and beetle collections was observed. Trap collection patterns were similar in both years of the study. In January and March, we were unable to prevent dispersal behavior of beetles captured in black-light traps. However, in May, after beetles had been in a dispersal phase for several months, we were able to suppress dispersal. In contrast, dispersal behavior among beetles captured with the mesh-bottomed trap did not change following the photoperiod-altered exposur
    corecore