6 research outputs found

    Euclid preparation: XVII. Cosmic Dawn Survey: Spitzer Space Telescope observations of the Euclid deep fields and calibration fields

    Get PDF
    We present a new infrared survey covering the three Euclid deep fields and four other Euclid calibration fields using Spitzer Space Telescope's Infrared Array Camera (IRAC). We combined these new observations with all relevant IRAC archival data of these fields in order to produce the deepest possible mosaics of these regions. In total, these observations represent nearly 11 % of the total Spitzer Space Telescope mission time. The resulting mosaics cover a total of approximately 71.5 deg^{2} in the 3.6 and 4.5 μm bands, and approximately 21.8 deg^{2} in the 5.8 and 8 μm bands. They reach at least 24 AB magnitude (measured to 5σ, in a 2″​​.5 aperture) in the 3.6 μm band and up to ∼5 mag deeper in the deepest regions. The astrometry is tied to the Gaia astrometric reference system, and the typical astrometric uncertainty for sources with 16 "< "[3.6]< 19 is ≲ 0″​​.15. The photometric calibration is in excellent agreement with previous WISE measurements. We extracted source number counts from the 3.6 μm band mosaics, and they are in excellent agreement with previous measurements. Given that the Spitzer Space Telescope has now been decommissioned, these mosaics are likely to be the definitive reduction of these IRAC data. This survey therefore represents an essential first step in assembling multi-wavelength data on the Euclid deep fields, which are set to become some of the premier fields for extragalactic astronomy in the 2020s

    COSMOS2020: A Panchromatic View of the Universe to z ∼ 10 from Two Complementary Catalogs

    Get PDF
    Abstract The Cosmic Evolution Survey (COSMOS) has become a cornerstone of extragalactic astronomy. Since the last public catalog in 2015, a wealth of new imaging and spectroscopic data have been collected in the COSMOS field. This paper describes the collection, processing, and analysis of these new imaging data to produce a new reference photometric redshift catalog. Source detection and multiwavelength photometry are performed for 1.7 million sources across the 2 deg2 of the COSMOS field, ∼966,000 of which are measured with all available broadband data using both traditional aperture photometric methods and a new profile-fitting photometric extraction tool, The Farmer, which we have developed. A detailed comparison of the two resulting photometric catalogs is presented. Photometric redshifts are computed for all sources in each catalog utilizing two independent photometric redshift codes. Finally, a comparison is made between the performance of the photometric methodologies and of the redshift codes to demonstrate an exceptional degree of self-consistency in the resulting photometric redshifts. The i &lt; 21 sources have subpercent photometric redshift accuracy and even the faintest sources at 25 &lt; i &lt; 27 reach a precision of 5%. Finally, these results are discussed in the context of previous, current, and future surveys in the COSMOS field. Compared to COSMOS2015, it reaches the same photometric redshift precision at almost one magnitude deeper. Both photometric catalogs and their photometric redshift solutions and physical parameters will be made available through the usual astronomical archive systems (ESO Phase 3, IPAC-IRSA, and CDS).</jats:p

    Practical radiation damage-induced phasing

    No full text
    International audienceAlthough crystallographers typically seek to mitigate radiation damage in macromolecular crystals, in some cases, radiation damage to specific atoms can be used to determine phases de novo. This process is called radiation damage-induced phasing or "RIP." Here, we provide a general overview of the method and a practical set of data collection and processing strategies for phasing macromolecular structures using RIP

    Bacterial flagella and motility

    No full text

    Die Stoffwechselkrankheiten und ihre Behandlung.

    No full text
    corecore