6,969 research outputs found

    Effect of ambient temperature and humidity on emissions of an idling gas turbine

    Get PDF
    The effects of inlet pressure, temperature, and humidity on the oxides of nitrogen produced by an engine operating at takeoff power setting were investigated and numerous correction factors were formulated. The effect of ambient relative humidity on gas turbine idle emissions was ascertained. Experimentally, a nonvitiating combustor rig was employed to simulate changing combustor inlet conditions as generated by changing ambient conditions. Emissions measurements were made at the combustor exit. For carbon monoxide, a reaction kinetic scheme was applied within each zone of the combustor where initial species concentrations reflected not only local combustor characteristics but also changing ambient conditions

    Quantum entanglement, unitary braid representation and Temperley-Lieb algebra

    Get PDF
    Important developments in fault-tolerant quantum computation using the braiding of anyons have placed the theory of braid groups at the very foundation of topological quantum computing. Furthermore, the realization by Kauffman and Lomonaco that a specific braiding operator from the solution of the Yang-Baxter equation, namely the Bell matrix, is universal implies that in principle all quantum gates can be constructed from braiding operators together with single qubit gates. In this paper we present a new class of braiding operators from the Temperley-Lieb algebra that generalizes the Bell matrix to multi-qubit systems, thus unifying the Hadamard and Bell matrices within the same framework. Unlike previous braiding operators, these new operators generate {\it directly}, from separable basis states, important entangled states such as the generalized Greenberger-Horne-Zeilinger states, cluster-like states, and other states with varying degrees of entanglement.Comment: 5 pages, no figur

    Measuring Complexity in an Aquatic Ecosystem

    Full text link
    We apply formal measures of emergence, self-organization, homeostasis, autopoiesis and complexity to an aquatic ecosystem; in particular to the physiochemical component of an Arctic lake. These measures are based on information theory. Variables with an homogeneous distribution have higher values of emergence, while variables with a more heterogeneous distribution have a higher self-organization. Variables with a high complexity reflect a balance between change (emergence) and regularity/order (self-organization). In addition, homeostasis values coincide with the variation of the winter and summer seasons. Autopoiesis values show a higher degree of independence of biological components over their environment. Our approach shows how the ecological dynamics can be described in terms of information.Comment: 6 pages, to be published in Proceedings of the CCBCOL 2013, 2nd Colombian Computational Biology Congress, Springe

    The Influence of Canalization on the Robustness of Boolean Networks

    Full text link
    Time- and state-discrete dynamical systems are frequently used to model molecular networks. This paper provides a collection of mathematical and computational tools for the study of robustness in Boolean network models. The focus is on networks governed by kk-canalizing functions, a recently introduced class of Boolean functions that contains the well-studied class of nested canalizing functions. The activities and sensitivity of a function quantify the impact of input changes on the function output. This paper generalizes the latter concept to cc-sensitivity and provides formulas for the activities and cc-sensitivity of general kk-canalizing functions as well as canalizing functions with more precisely defined structure. A popular measure for the robustness of a network, the Derrida value, can be expressed as a weighted sum of the cc-sensitivities of the governing canalizing functions, and can also be calculated for a stochastic extension of Boolean networks. These findings provide a computationally efficient way to obtain Derrida values of Boolean networks, deterministic or stochastic, that does not involve simulation.Comment: 16 pages, 2 figures, 3 table

    Response of Boolean networks to perturbations

    Full text link
    We evaluate the probability that a Boolean network returns to an attractor after perturbing h nodes. We find that the return probability as function of h can display a variety of different behaviours, which yields insights into the state-space structure. In addition to performing computer simulations, we derive analytical results for several types of Boolean networks, in particular for Random Boolean Networks. We also apply our method to networks that have been evolved for robustness to small perturbations, and to a biological example

    Random Boolean Network Models and the Yeast Transcriptional Network

    Full text link
    The recently measured yeast transcriptional network is analyzed in terms of simplified Boolean network models, with the aim of determining feasible rule structures, given the requirement of stable solutions of the generated Boolean networks. We find that for ensembles of generated models, those with canalyzing Boolean rules are remarkably stable, whereas those with random Boolean rules are only marginally stable. Furthermore, substantial parts of the generated networks are frozen, in the sense that they reach the same state regardless of initial state. Thus, our ensemble approach suggests that the yeast network shows highly ordered dynamics.Comment: 23 pages, 5 figure

    The computational complexity of Kauffman nets and the P versus NP problem

    Full text link
    Complexity theory as practiced by physicists and computational complexity theory as practiced by computer scientists both characterize how difficult it is to solve complex problems. Here it is shown that the parameters of a specific model can be adjusted so that the problem of finding its global energy minimum is extremely sensitive to small changes in the problem statement. This result has implications not only for studies of the physics of random systems but may also lead to new strategies for resolving the well-known P versus NP question in computational complexity theory.Comment: 4 pages, no figure

    Isoachlya, A New Genus Of The Saprolegniaceae

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141619/1/ajb205620.pd

    The Genera Flammula And Paxillus And The Status Of The American Species

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141718/1/ajb205862.pd
    corecore