110 research outputs found
Observation of generalized optomechanical coupling and cooling on cavity resonance
Optomechanical coupling between a light field and the motion of a cavity
mirror via radiation pressure plays an important role for the exploration of
macroscopic quantum physics and for the detection of gravitational waves (GWs).
It has been used to cool mechanical oscillators into their quantum ground
states and has been considered to boost the sensitivity of GW detectors, e.g.
via the optical spring effect. Here, we present the experimental
characterization of generalized, that is, dispersive and dissipative
optomechanical coupling, with a macroscopic (1.5mm)^2-sized silicon nitride
(SiN) membrane in a cavity-enhanced Michelson-type interferometer. We report
for the first time strong optomechanical cooling based on dissipative coupling,
even on cavity resonance, in excellent agreement with theory. Our result will
allow for new experimental regimes in macroscopic quantum physics and GW
detection
Tomographic readout of an opto-mechanical interferometer
The quantum state of light changes its nature when being reflected off a
mechanical oscillator due to the latter's susceptibility to radiation pressure.
As a result, a coherent state can transform into a squeezed state and can get
entangled with the motion of the oscillator. The complete tomographic
reconstruction of the state of light requires the ability to readout arbitrary
quadratures. Here we demonstrate such a readout by applying a balanced homodyne
detector to an interferometric position measurement of a thermally excited
high-Q silicon nitride membrane in a Michelson-Sagnac interferometer. A readout
noise of \unit{1.9 \cdot 10^{-16}}{\metre/\sqrt{\hertz}} around the
membrane's fundamental oscillation mode at \unit{133}{\kilo\hertz} has been
achieved, going below the peak value of the standard quantum limit by a factor
of 8.2 (9 dB). The readout noise was entirely dominated by shot noise in a
rather broad frequency range around the mechanical resonance.Comment: 7 pages, 5 figure
Eta Carinae: Binarity Confirmed
We report the recovery of a spectroscopic event in eta Carinae in 1997/98
after a prediction by Damineli (1996). A true periodicity with P = 2020+-5 days
(0.2% uncertainty) is obtained. The line intensities and the radial-velocity
curve display a phase-locked behavior implying that the energy and dynamics of
the event repeat from cycle to cycle. This rules out S Doradus oscillation or
multiple shell ejection by an unstable star as the explanation of the
spectroscopic events. A colliding-wind binary scenario is supported by our
spectroscopic data and by X-ray observations. Although deviations from a simple
case exist around periastron, intensive monitoring during the next event (mid
2003) will be crucial to the understanding of the system.Comment: 13 pages, accepted by ApJ Letters (January 2000
First Stellar Abundances in the Dwarf Irregular Galaxy Sextans A
We present the abundance analyses of three isolated A-type supergiant stars
in the dwarf irregular galaxy Sextans A from high-resolution spectra the UVES
spectrograph at the VLT. Detailed model atmosphere analyses have been used to
determine the stellar atmospheric parameters and the elemental abundances of
the stars. The mean iron group abundance was determined from these three stars
to be [(FeII,CrII)/H]=-0.99+/-0.04+/-0.06. This is the first determination of
the present-day iron group abundances in Sextans A. These three stars now
represent the most metal-poor massive stars for which detailed abundance
analyses have been carried out. The mean stellar alpha element abundance was
determined from the alpha element magnesium as
[alpha(MgI)/H]=-1.09+/-0.02+/-0.19. This is in excellent agreement with the
nebular alpha element abundances as determined from oxygen in the H II regions.
These results are consistent from star-to-star with no significant spatial
variations over a length of 0.8 kpc in Sextans A. This supports the nebular
abundance studies of dwarf irregular galaxies, where homogeneous oxygen
abundances are found throughout, and argues against in situ enrichment. The
alpha/Fe abundance ratio is [alpha(MgI)/FeII,CrII]=-0.11+/-0.02+/-0.10, which
is consistent with the solar ratio. This is consistent with the results from
A-supergiant analyses in other Local Group dwarf irregular galaxies but in
stark contrast with the high [alpha/Fe] results from metal-poor stars in the
Galaxy, and is most clearly seen from these three stars in Sextans A because of
their lower metallicities. The low [alpha/Fe] ratios are consistent with the
slow chemical evolution expected for dwarf galaxies from analyses of their
stellar populations.Comment: 40 pages, 8 figures, accepted for publication in A
High spatial resolution monitoring of the activity of BA supergiant winds
There are currently two optical interferometry recombiners that can provide
spectral resolutions better than 10000, AMBER/VLTI operating in the H-K bands,
and VEGA/CHARA, recently commissioned, operating in the visible. These
instruments are well suited to study the wind activity of the brightest AB
supergiants in our vicinity, in lines such as H or BrGamma. We present
here the first observations of this kind, performed on Rigel (B8Ia) and Deneb
(A2Ia). Rigel was monitored by AMBER in two campaigns, in 2006-2007 and
2009-2010, and observed in 2009 by VEGA; whereas Deneb was monitored in
2008-2009 by VEGA. The extension of the Halpha and BrGamma line forming regions
were accurately measured and compared with CMFGEN models of both stars.
Moreover, clear signs of activity were observed in the differential visibility
and phases. These pioneer observations are still limited, but show the path for
a better understanding of the spatial structure and temporal evolution of
localized ejections using optical interferometry.Comment: Proceedings of conf. IAUS272 - Active OB stars - Paris, July 19-23,
201
Thermal modelling of Advanced LIGO test masses
High-reflectivity fused silica mirrors are at the epicentre of current
advanced gravitational wave detectors. In these detectors, the mirrors interact
with high power laser beams. As a result of finite absorption in the high
reflectivity coatings the mirrors suffer from a variety of thermal effects that
impact on the detectors performance. We propose a model of the Advanced LIGO
mirrors that introduces an empirical term to account for the radiative heat
transfer between the mirror and its surroundings. The mechanical mode frequency
is used as a probe for the overall temperature of the mirror. The thermal
transient after power build-up in the optical cavities is used to refine and
test the model. The model provides a coating absorption estimate of 1.5 to 2.0
ppm and estimates that 0.3 to 1.3 ppm of the circulating light is scattered on
to the ring heater.Comment: 14 pages, 9 figure
Visualization of Marekâs Disease Virus Genomes in Living Cells during Lytic Replication and Latency
Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marekâs disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses.Peer Reviewe
Visualization of Marekâs Disease Virus Genomes in Living Cells during Lytic Replication and Latency
Visualization of the herpesvirus genomes during lytic replication and latency is mainly achieved by fluorescence in situ hybridization (FISH). Unfortunately, this technique cannot be used for the real-time detection of viral genome in living cells. To facilitate the visualization of the Marekâs disease virus (MDV) genome during all stages of the virus lifecycle, we took advantage of the well-established tetracycline operator/repressor (TetO/TetR) system. This system consists of a fluorescently labeled TetR (TetR-GFP) that specifically binds to an array of tetO sequences. This tetO repeat array was first inserted into the MDV genome (vTetO). Subsequently, we fused TetR-GFP via a P2a self-cleaving peptide to the C-terminus of the viral interleukin 8 (vIL8), which is expressed during lytic replication and latency. Upon reconstitution of this vTetO-TetR virus, fluorescently labeled replication compartments were detected in the nucleus during lytic replication. After validating the specificity of the observed signal, we used the system to visualize the genesis and mobility of the viral replication compartments. In addition, we assessed the infection of nuclei in syncytia as well as lytic replication and latency in T cells. Taken together, we established a system allowing us to track the MDV genome in living cells that can be applied to many other DNA viruses
Nucleosynthesis And The Inhomogeneous Chemical Evolution Of The Carina Dwarf Galaxy
The detailed abundances of 23 chemical elements in nine bright red giant branch stars in the Carina dwarf spheroidal galaxy are presented based on high-resolution spectra gathered at the Very Large Telescope (VLT) and Magellan telescopes. A spherical model atmospheres analysis is applied using standard methods (local thermodynamic equilibrium and plane-parallel radiative transfer) to spectra ranging from 380 to 680 nm. Stellar parameters are found to be consistent between photometric and spectroscopic analyses, both at moderate and high resolution. The stars in this analysis range in metallicity from -2.9 < [Fe/H] < -1.3, and adopting the ages determined by Lemasle et al., we are able to examine the chemical evolution of Carina's old and intermediate-aged populations. One of the main results from this work is the evidence for inhomogeneous mixing in Carina and therefore for a poor statistical sampling of the supernova contributions when forming stars; a large dispersion in [Mg/Fe] indicates poor mixing in the old population, an offset in the [alpha/Fe] ratios between the old and intermediate-aged populations (when examined with previously published results) suggests that the second star formation event occurred in alpha-enriched gas, and one star, Car-612, seems to have formed in a pocket enhanced in SN Ia/II products. This latter star provides the first direct link between the formation of stars with enhanced SN Ia/II ratios in dwarf galaxies to those found in the outer Galactic halo (Ivans et al.). Another important result is the potential evidence for SNII driven winds. We show that the very metal-poor stars in Carina have not been enhanced in asymptotic giant branch or SN Ia products, and therefore their very low ratios of [Sr/Ba] suggests the loss of contributions from the early SNe II. Low ratios of [Na/Fe], [Mn/Fe], and [Cr/Fe] in two of these stars support this scenario, with additional evidence from the low [Zn/Fe] upper limit for one star. It is interesting that the chemistry of the metal-poor stars in Carina is not similar to those in the Galaxy, most of the other dwarf spheroidal galaxies, or the ultra faint dwarfs, and suggests that Carina may be at the critical mass where some chemical enrichments are lost through SN II driven winds.NSERCNSF AST 99-84073McDonald Observator
Three intervening galaxy absorbers towards GRB060418: faint and dusty?
We present an analysis of three strong, intervening Mg II absorption systems
(z_abs = 0.603, 0.656, 1.107) towards the optical afterglow of gamma-ray burst
(GRB) 060418. From high resolution UVES spectra we measure metal column
densities and find that the highest redshift absorber exhibits a large amount
of dust depletion compared with DLAs seen in QSO spectra. The intervening z_abs
= 1.107 absorber is also unusual in exhibiting a clear 2175 A bump, the first
time this feature has been definitively detected in a GRB spectrum. The GRB
afterglow spectrum is best fit with a two component extinction curve: an SMC
extinction law at z=1.49 (the redshift of the host) with E(B-V) = 0.07+-0.01
and a Galactic extinction curve at z ~ 1.1 with E(B-V) = 0.08+-0.01. We also
present a moderately deep NTT R-band image of the GRB060418 field and
spectroscopy of four galaxies within 1 arcminute. None of these objects has a
redshift that matches any of the intervening absorbers, and we conclude that
the galaxies responsible for the two intervening Mg II absorbers at z ~ 0.6
have luminosities ~<0.3 L^star.Comment: Accepted for publication in MNRAS (Letters), 5 pages. Updated with
more accurate host positio
- âŠ