749 research outputs found

    Computational study of a complex three-dimensional shock boundary-layer interaction

    Get PDF
    Shock boundary–layer interactions occur in many high-speed aerodynamic flows and they can have a notable impact on design considerations due to the aerodynamic and heat transfer effects. Consequently there is a notable interest in understanding the ability of computational tools to calculate the complex flow fields that can arise in a range of engineering applications. Three-dimensional complex shock boundary layer interaction studies are expensive in both time and computational resources. Although recent studies have begun to focus on the use of more complex computational methods such as large eddy simulations, the aim of this research is to assess the ability of steady Reynolds averaged Navier Stokes turbulence models to simulate the interaction of a planar shock impinging on a cylindrical body under supersonic conditions and to determine if these models have a role to play in engineering design applications. The performance of both eddy viscosity and Reynolds stress models are evaluated relative to an established experimental test case. The impact of Reynolds number and impinging shock strength are also considered. Of the eddy viscosity models it was shown that the Spalart-Allmaras model is unsuitable for this complex interaction and that the k- and Reynolds stress methods both gave notably better agreement with the measured surface static pressures. Overall it was considered that the Reynolds stress method was the best model as it also provided better agreement with the measured surface flow topology. It was concluded that, although a steady Reynolds averaged Navier Stokes approach has known limitations for this type of complex interaction, within an engineering context it can also provide useful results when applied appropriately

    Highly Permeable Perfluorinated Sulfonic Acid Ionomers for Improved Electrochemical Devices: Insights into Structure-Property Relationships.

    Get PDF
    Rapid improvements in polymer-electrolyte fuel-cell (PEFC) performance have been driven by the development of commercially available ion-conducting polymers (ionomers) that are employed as membranes and catalyst binders in membrane-electrode assemblies. Commercially available ionomers are based on a perfluorinated chemistry comprised of a polytetrafluoroethylene (PTFE) matrix that imparts low gas permeability and high mechanical strength but introduces significant mass-transport losses in the electrodes. These transport losses currently limit PEFC performance, especially for low Pt loadings. In this study, we present a novel ionomer incorporating a glassy amorphous matrix based on a perfluoro(2-methylene-4-methyl-1,3-dioxolane) (PFMMD) backbone. The novel backbone chemistry induces structural changes in the ionomer, restricting ionomer domain swelling under hydration while disrupting matrix crystallinity. These structural changes slightly reduce proton conductivity while significantly improving gas permeability. The performance implications of this trade-off are assessed, which reveal the potential for substantial performance improvement by incorporation of highly permeable ionomers as the functional catalyst binder. These results underscore the significance of tailoring material chemistry to specific device requirements, where ionomer chemistry should be rationally designed to match the local transport requirements of the device architecture

    Successful reconstruction of whole mitochondrial genomes from ancient Central America and Mexico

    No full text
    The northern and southern peripheries of ancient Mesoamerica are poorly understood. There has been speculation over whether borderland cultures such as Greater Nicoya and Casas Grandes represent Mesoamerican outposts in the Isthmo-Colombian area and the Greater Southwest, respectively. Poor ancient DNA preservation in these regions challenged previous attempts to resolve these questions using conventional genetic techniques. We apply advanced in-solution mitogenome capture and high-throughput sequencing to fourteen dental samples obtained from the Greater Nicoya sites of JĂ­caro and La Cascabel in northwest Costa Rica (n = 9; A.D. 800–1250) and the Casas Grandes sites of PaquimĂ© and Convento in northwest Mexico (n = 5; A.D. 1200–1450). Full mitogenome reconstruction was successful for three individuals from JĂ­caro and five individuals from PaquimĂ© and Convento. The three JĂ­caro individuals belong to haplogroup B2d, a haplogroup found today only among Central American Chibchan-speakers. The five PaquimĂ© and Convento individuals belong to haplogroups C1c1a, C1c5, B2f and B2a which, are found in contemporary populations in North America and Mesoamerica. We report the first successfully reconstructed ancient mitogenomes from Central America, and the first genetic evidence of ancestry affinity of the ancient inhabitants of Greater Nicoya and Casas Grandes with contemporary Isthmo-Columbian and Greater Southwest populations, respectively

    Self-Propelled Carbohydrate-Sensitive Microtransporters with Built-In Boronic Acid Recognition for Isolating Sugars and Cells

    Get PDF
    A new nanomotor-based target isolation strategy, based on a “built-in” recognition capability, is presented. The concept relies on a poly(3-aminophenylboronic acid) (PAPBA)/Ni/Pt microtube engine coupling the selective monosaccharide recognition of the boronic acid-based outer polymeric layer with the catalytic function of the inner platinum layer. The PAPBA-based microrocket is prepared by membrane-templated electropolymerization of 3-aminophenylboronic acid monomer. The resulting boronic acid-based microengine itself provides the target recognition without the need for additional external functionalization. “On-the-fly” binding and transport of yeast cells (containing sugar residues on their wall) and glucose are illustrated. The use of the recognition polymeric layer does not hinder the efficient propulsion of the microengine in aqueous and physiological media. Release of the captured yeast cells is triggered via a competitive sugar binding involving addition of fructose. No such capture and transport are observed in control experiments involving other cells or microengines. Selective isolation of monosaccharides is illustrated using polystyrene particles loaded with different sugars. Such self-propelled nanomachines with a built-in recognition capability hold considerable promise for diverse applications

    Bone Chemistry at Cerro Oreja: A Stable Isotope Perspective on the Development of a Regional Economy in the Moche Valley, Peru During the Early Intermediate Period

    Get PDF
    Abstract In this paper we test the hypothesis that an intensification of maize production preceded the development of a regional Moche political economy in the Moche Valley of north coastal Peru during the Early Intermediate period (400 B.C.—A.D. 600). To do so we analyze stable isotopic signatures of 48 bone apatite and 17 tooth enamel samples from human remains recovered from the site of Cerro Oreja, a large urban and ceremonial center in the Moche Valley. These remains date to the Guañape, Salinar, or Gallinazo phases and provide a diachronic picture of subsistence before the appearance of the Southern Moche state. The most notable patterns identified in the study include a lack of significant change in ÎŽ 13 C apatite values from the Guañape to Satinar phases, followed by a significant enrichment in ÎŽ 13 C apatite values from the Salinar to Gallinazo phases. Several lines of evidence, including archaeological context, dental data, and comparative carbon stable isotope data from experimental animal studies and studies of archaeological human remains support the interpretation that the observed 13 C enrichment in stable isotope values in the Gallinazo phase primarily reflects maize intensification. The stable isotope data from Cerro Oreja thus suggest that a shift in subsistence toward a highly productive and storable crop may have served as an important precursor to state development during the Early Intermediate period in the Moche Valley

    Integrating isotopes and documentary evidence : dietary patterns in a late medieval and early modern mining community, Sweden

    Get PDF
    We would like to thank the Archaeological Research Laboratory, Stockholm University, Sweden and the Tandem Laboratory (Ångström Laboratory), Uppsala University, Sweden, for undertaking the analyses of stable nitrogen and carbon isotopes in both human and animal collagen samples. Also, thanks to Elin Ahlin Sundman for providing the ÎŽ13C and ÎŽ15N values for animal references from VĂ€sterĂ„s. This research (BĂ€ckström’s PhD employment at Lund University, Sweden) was supported by the Berit Wallenberg Foundation (BWS 2010.0176) and Jakob and Johan Söderberg’s foundation. The ‘Sala project’ (excavations and analyses) has been funded by Riksens Clenodium, Jernkontoret, Birgit and Gad Rausing’s Foundation, SAU’s Research Foundation, the Royal Physiographic Society of Lund, Berit Wallenbergs Foundation, Åke Wibergs Foundation, Lars Hiertas Memory, Helge Ax:son Johnson’s Foundation and The Royal Swedish Academy of Sciences.Peer reviewedPublisher PD

    Underestimating intraspecific variation: The problem with excluding Sts 19 from Australopithecus africanus

    Full text link
    Two analyses conclude that Sts 19 cannot be accommodated within the Australopithecus africanus hypodigm (Kimbel and Rak [1993] In Kimbel and Martin [eds.]: Species, Species Concepts, and Primate Evolution. New York: Plenum, pp. 461–484; Sarmiento [1993] Am. J. Phys. Anthropol. [Suppl.] 16: 173). Both studies exclude Sts 19 because it possesses synapomorphies with Homo. Furthermore, according to Kimbel and Rak (1993), including Sts 19 in A. africanus results in an unacceptably high degree of polymorphism. This study aims to refute the null hypothesis that Sts 19 belongs to A. africanus. Twelve basicranial characters, as defined and implemented in Kimbel and Rak's study, were scored for casts of seven A. africanus and seven Homo habilis basicranial specimens. These characters were also examined on specimens from a large (N = 87) sample of African pongids. Contrary to Kimbel and Rak's (1993) findings, the null hypothesis is not refuted. The degree of polymorphism among A. africanus with Sts 19 included is less than that seen in Pan troglodytes. In addition, Sts 19 shares only one apomorphy with Homo. However, when treated metrically, Sts 19's morphology for this character is not significantly divergent from other A. africanus specimens. Am J Phys Anthropol 105:461–480, 1998. © 1998 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/37684/1/5_ftp.pd

    PER2 Variation is Associated with Diurnal Preference in a Korean Young Population

    Get PDF
    The PER2 gene has been reported to influence diurnal preference. In this study, we have attempted to characterize the associations between the PER2 gene polymorphisms and diurnal preference in a population of healthy young subjects, controlling for the social and environmental confounding factors. Subjects were 299 students in a college, carefully selected to be mentally and physically healthy. All subjects completed the 13-item composite scale for morningness (CSM). PER2 gene polymorphisms were genotyped by PCR-based methods. Genotype and allele carrier status of a PER2 G3853A polymorphism (rs934945) were associated with CSM scores. Carriers of the 3853G allele showed significantly higher CSM scores (P = 0.004, P = 0.009, and P = 0.001; total, morningness, and activity plan, respectively). There were no significant differences on CSM scores among genotypes and allele status of PER2 rs2304672. This result indicates that rs934945 of PER2 may be associated with diurnal preference in a Korean healthy population
    • 

    corecore