12 research outputs found

    A shared vesicular carrier allows synaptic corelease of GABA and glycine

    No full text
    The type of vesicular transporter expressed by a neuron is thought to determine its neurotransmitter phenotype. We show that inactivation of the vesicular inhibitory amino acid transporter (Viaat, VGAT) leads to embryonic lethality, an abdominal defect known as omphalocele, and a cleft palate. Loss of Viaat causes a drastic reduction of neurotransmitter release in both GABAergic and glycinergic neurons, indicating that glycinergic neurons do not express a separate vesicular glycine transporter. This loss of GABAergic and glycinergic synaptic transmission does not impair the development of inhibitory synapses or the expression of KCC2, the K+-Cl- cotransporter known to be essential for the establishment of inhibitory neurotransmission. In the absence of Viaat, GABA-synthesizing enzymes are partially lost from presynaptic terminals. Since GABA and glycine compete for vesicular uptake, these data point to a close association of Viaat with GABA-synthesizing enzymes as a key factor in specifying GABAergic neuronal phenotypes

    of repeated cerebral ischemia

    No full text
    Ethnophannacological relevance: Japanese Angelica acutiloba root (Angelica root) is included in several Kampo medicines including Yokukansan (YKS). Angelica root and YKS are used for the treatment of a variety of psychological and neurodegenerative disorders. Development of safe and effective therapeutic agents against cerebrovascular disorders will improve the treatment of patients with dementia.Aim of the study: The effect of Angelica root and YKS on ischemia-impaired memory has not yet been fully investigated. The present study investigated whether Angelica root is also involved in memory improving and neuroprotective effect of YKS in a model of cerebrovascular ischemia.Materials and methods: Male Wistar rats grouped into sham rats received saline, and other three groups subjected to repeated cerebral ischemia induced by 4-vessel occlusion (4-VO), received a 7-day oral administration of either saline, Angelica root or YKS. Memory was evaluated by eight-arm radial maze task. Acetylcholine release (ACh) in the dorsal hippocampus was investigated by microdialysis-HPLC. Apoptosis was determined by terminal deoxynucleotidyl transferase (TdT)-mediated fluorescein-deoxyuridine triphosphate (dUTP) nick-end labeling.Results: lschemia induced apoptosis, reduced release of ACh, and impaired the memory (increased error choices and decreased correct choices). Angelica root and YKS improved the memory deficits, upregulated the release of ACh and prevented 4-VO-induced hippocampal apoptosis.Conclusion: The dual ACh-increasing and neuroprotective effect of Angelica root could make it a promising therapeutic agent useful for the treatment of symptoms of cerebrovascular dementia. Angelica root could be one of the components contributing to the memory-improving and neuroprotective effects of YKS

    Regulation of Rap2A by the ubiquitin ligase Nedd4-1 controls neurite development

    Get PDF
    SummaryNedd4-1 is a “neuronal precursor cell expressed and developmentally downregulated protein” and among the most abundant E3 ubiquitin ligases in mammalian neurons. In analyses of conventional and conditional Nedd4-1-deficient mice, we found that Nedd4-1 plays a critical role in dendrite formation. Nedd4-1, the serine/threonine kinase TNIK, and Rap2A form a complex that controls Nedd4-1-mediated ubiquitination of Rap2A. Ubiquitination by Nedd4-1 inhibits Rap2A function, which reduces the activity of Rap2 effector kinases of the TNIK family and promotes dendrite growth. We conclude that a Nedd4-1/Rap2A/TNIK signaling pathway regulates neurite growth and arborization in mammalian neurons

    Functional roles of presynaptic GABAA receptors on glycinergic nerve terminals in the rat spinal cord

    No full text
    GABAA receptor-mediated presynaptic depolarization is believed to induce presynaptic inhibition of excitatory synaptic transmission. We report here the functional roles of presynaptic GABAA receptors in glycinergic transmission of the rat spinal cord. In mechanically dissociated rat sacral dorsal commissural nucleus (SDCN) neurons attached with native glycinergic and GABAergic nerve terminals, glycinergic spontaneous inhibitory postsynaptic currents (sIPSCs) were isolated from a mixture of both glycinergic and GABAergic sIPSCs by perfusing the SDCN nerve cell body with ATP-free internal solution. Under such experimental conditions, exogenously applied muscimol (0.5 μM) depolarized glycinergic presynaptic nerve terminals and significantly increased glycinergic sIPSC frequency to 542.7 ± 47.3 % of the control without affecting the mean current amplitude. The facilitatory effect of muscimol on sIPSC frequency was completely blocked by bicuculline (10 μM) or SR95531 (10 μM), selective GABAA receptor antagonists. This muscimol-induced presynaptic depolarization was due to a higher intraterminal Cl− concentration, which is maintained by a bumetanide-sensitive Na-K-Cl cotransporter. On the contrary, when electrically evoked, this muscimol-induced presynaptic depolarization was found to decrease the action potential-dependent glycine release evoked by focal stimulation of a single terminal. The results suggest that GABAA receptor-mediated presynaptic depolarization has two functional roles: (1) presynaptic inhibition of action potential-driven glycinergic transmission, and (2) presynaptic facilitation of spontaneous glycinergic transmission
    corecore