17 research outputs found

    Microvascular and cardiovascular outcomes according to renal function in patients treated with once-weekly exenatide: Insights from the EXSCEL trial

    Get PDF
    OBJECTIVE To evaluate the impact of once-weekly exenatide (EQW) on microvascular and cardiovascular (CV) outcomes by baseline renal function in the Exenatide Study of Cardiovascular Event Lowering (EXSCEL). RESEARCH DESIGN AND METHODS Least squares mean difference (LSMD) in estimated glomerular filtration rate (eGFR) from baseline between the EQW and placebo groups was calculated for 13,844 participants. Cox regression models were used to estimate effects by group on incident macroalbuminuria, retinopathy, and major adverse CV events (MACE). Interval-censored time-to-event models estimated effects on renal composite 1 (40% eGFR decline, renal replacement, or renal death) and renal composite 2 (composite 1 variables plus macroalbuminuria). RESULTS EQW did not change eGFR significantly (LSMD 0.21 mL/min/1.73 m2 [95% CI 20.27 to 0.70]). Macroalbuminuria occurred in 2.2% of patients in the EQW group and in 2.5% of those in the placebo group (hazard ratio [HR] 0.87 [95% CI 0.70-1.07]). Neither renal composite was reduced with EQW in unadjusted analyses, but renal composite 2 was reduced after adjustment (HR 0.85 [95% CI 0.74-0.98]). Retinopathy rates did not differ by treatment group or in the HbA1c-lowering or prior retinopathy subgroups. CV outcomes in those with eGFR <60 mL/min/1.73 m2 did not differ by group. Those with eGFR ≥60 mL/min/1.73 m2 had nominal risk reductions for MACE, all-cause mortality, and CV death, but interactions by renal function group were significant for only stroke (HR 0.74 [95% CI 0.58-0.93]; P for interaction 5 0.035) and CV death (HR 1.08 [95% CI 0.85-1.38]; P for interaction 5 0.031). CONCLUSIONS EQW had no impact on unadjusted retinopathy or renal outcomes. CV risk was modestly reduced only in those with eGFR ≥60 mL/min/1.73 m2 in analyses unadjusted for multiplicity

    Nanostructured SiGe thin films obtained through MIC processing

    No full text
    Silicon-germanium (SiGe) alloys are a well-known classic thermoelectric material used for high temperature applications. Recent thermoelectric research on SiGe alloys often focuses on a nanostructuring approach trying to increase its efficiency. This can be achieved by the introduction of grain boundaries and point defects, which effectively increase the scattering rate of phonons and thus reduce the lattice thermal conductivity. In this work, we present an approach to produce nanograinedSiGe thin films by means of sputter deposition and utilizing the effect of metal induced crystallization in a post annealing step. Samples were prepared in the form of Al/SiGemultilayers enabling control over both the lowered crystallization temperature and crystallite size of the SiGe by adjusting the Al interlayer thickness. Since parts of the Al are incorporated into the SiGe during crystallization, no additional efforts have to be made to reach sufficient doping levels. The microstructure of the samples was characterized using transmission electron microscopy, secondary neutral mass spectrometry, and x-ray diffraction. Measured transport properties include specific electrical resistance, Seebeck coefficient, and Hall carrier concentration
    corecore