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OBJECTIVE

To evaluate the impact of once-weekly exenatide (EQW) on microvascular and
cardiovascular (CV) outcomes by baseline renal function in the Exenatide Study of
Cardiovascular Event Lowering (EXSCEL).

RESEARCH DESIGN AND METHODS

Least squaresmeandifference (LSMD) inestimatedglomerularfiltration rate (eGFR)
from baseline between the EQW and placebo groups was calculated for 13,844
participants. Cox regression models were used to estimate effects by group on
incident macroalbuminuria, retinopathy, and major adverse CV events (MACE).
Interval-censored time-to-event models estimated effects on renal composite
1 (40% eGFR decline, renal replacement, or renal death) and renal composite
2 (composite 1 variables plus macroalbuminuria).

RESULTS

EQW did not change eGFR significantly (LSMD 0.21 mL/min/1.73 m2 [95% CI20.27
to 0.70]). Macroalbuminuria occurred in 2.2% of patients in the EQW group and in
2.5% of those in the placebo group (hazard ratio [HR] 0.87 [95% CI 0.70–1.07]).
Neither renal composite was reduced with EQW in unadjusted analyses, but renal
composite 2 was reduced after adjustment (HR 0.85 [95% CI 0.74–0.98]). Reti-
nopathy rates did not differ by treatment group or in the HbA1c-lowering or prior
retinopathy subgroups. CV outcomes in those with eGFR <60 mL/min/1.73 m2 did
not differ by group. Those with eGFR ‡60 mL/min/1.73 m2 had nominal risk
reductions for MACE, all-cause mortality, and CV death, but interactions by renal
function group were significant for only stroke (HR 0.74 [95% CI 0.58–0.93]; P for
interaction5 0.035) and CV death (HR 1.08 [95% CI 0.85–1.38]; P for interaction5
0.031).

CONCLUSIONS

EQW had no impact on unadjusted retinopathy or renal outcomes. CV risk was
modestly reduced only in those with eGFR ‡60 mL/min/1.73 m2 in analyses
unadjusted for multiplicity.
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Patients with type 2 diabetes are at
increased risk for microvascular compli-
cations, including retinopathy and ne-
phropathy. The combination of chronic
kidney disease (CKD) and diabetes aug-
ments the risk for macrovascular com-
plications,making ithigher than thatwith
diabetes alone (1–3). While improved
glycemic control reduces microvascular
risk (4) and has a modest impact on
macrovascular outcomes (5), recent ev-
idence suggests that sodium–glucose
cotransporter-2 (SGLT-2) inhibitors and
some glucagon-like peptide 1 (GLP-1)
receptor agonists (RAs) may exert ben-
eficial effects independent of glucose
lowering (6–8).
The Exenatide Study of Cardiovascular

Event Lowering (EXSCEL) was a multina-
tional, placebo-controlled, randomized
cardiovascular (CV) outcome trial de-
signed to assess the impact of the
GLP-1 RA exenatide (2 mg taken once
weekly; EQW) versus that of placebo
when added to usual care in patients
with type 2 diabetes who had a wide
range of CV risk (9,10). The study ran-
domized 14,752 participants from 35
countries and demonstrated, over a me-
dian 3.2-year follow-up, the noninferior-
ity, but not superiority, of EQWcompared
with a placebo for the primary major
adverse CV event (MACE) outcomeda
composite of CV-related death, nonfatal
myocardial infarction, or nonfatal stroke
(hazard ratio [HR] 0.91 [95% CI 0.83–
1.00]; P 5 0.061)dand a reduced risk
for all-cause mortality (HR 0.86 [95% CI
0.77–0.97]; P 5 0.016) that was nom-
inally significant because of the prespe-
cifiedhierarchical testing paradigm (10).
Although the study excluded partici-
pants with an estimated glomerular
filtration rate (eGFR) ,30 mL/min/
1.73 m2 at baseline, 21.7% had at least
CKD stage 3 (eGFR ,60 mL/min/
1.73 m2). Here we report key primary
and secondary CV outcomes, according
to the degree of renal dysfunction, and
microvascular outcomes measured among
the overall population.

RESEARCH DESIGN AND METHODS

Trial Design
The design and primary results of EXSCEL
(clinical trial reg. no. NCT01144338,
ClinicalTrials.gov) have been described
(9,10). The trial was conducted jointly by
the Duke Clinical Research Institute and
the University of Oxford Diabetes Trials

Unit in an academic collaboration with
the sponsor, Amylin Pharmaceuticals,
a wholly owned subsidiary of Astra-
Zeneca. The protocol was approved
by the ethics committee at each partici-
pating site, and all participants pro-
vided written informed consent for trial
participation. Briefly, 14,752 adult par-
ticipantswith type2diabetes (HbA1c 6.5–
10.0% [48–96 mmol/mol]) who had
either had a prior CV event (n 5 10,782
[73.1%]) or not had a prior CV event (n5
3,790 [26.9%]) were randomized 1:1 to
receive EQW or placebo in addition to
usual care. EXSCEL was a pragmatic trial in
which laboratory data, measured per local
clinical careguidelines in local laboratories,
were collected opportunistically, with
the only exceptions being serum creati-
nine, which was required to be measured
annually to inform possible EQW dose
changes, and calcitonin, which was mea-
sured annually by a central laboratory. Key
exclusion criteria were a history of two or
more episodes of severe hypoglycemia
(defined as hypoglycemia for which a pa-
tient received third-party assistance) dur-
ing the preceding 12 months, end-stage
kidney disease or an eGFR ,30 mL/min/
1.73 m2 body surface area, or previous
treatment with a GLP-1 RA. The primary
outcome was time to the first occurrence
of any component of theMACE composite
(death from CV causes, nonfatal myocar-
dial infarction, or nonfatal stroke). In
time-to-event analyses, key secondary
outcomes were death from any cause;
death from a CV cause; and the first
occurrence of nonfatal or fatal myocardial
infarction, nonfatal or fatal stroke, hospi-
talization for acute coronary syndrome, or
hospitalization forheart failure. Information
was collected systematically for all events at
1 week; at 2, 6, and 12 months; and every
6 months thereafter. An independent clin-
ical events classification committee blinded
to treatment assignment adjudicated all
components of the primary and secondary
outcomes. Criteria for adjudication are de-
fined in the Clinical Event Definitions sec-
tion of the Supplementary Data.
Prespecified additional microvascular

outcomes reported here comprise renal
composite 1 (time to first event of a 40%
decline in eGFR [11], renal replacement,
or renal death), renal composite 2 (renal
composite 1 variables plus incident mac-
roalbuminuria), and incident retinopa-
thy. Also analyzed were progression
to a 30% or 40% decline in eGFR as

well asprogression toCKD stage3, 4, or 5.
Results for progression end points were
not meaningfully different from those
reflected in the renal composites and are
not presented here. Laboratory values
for eGFR were obtained from blood
sampling during usual care, consistent
with the pragmatic trial design. Progres-
sion to micro- or macroalbuminuria was
classified as an expected diabetes com-
plication and was assessed at each visit
via a yes-or-no answer to the question,
“Since the previous visit, did the patient
experience any new or worsening occur-
rences of albuminuria?” An affirmative
response indicated classification of the
event as either micro- or macroalbumi-
nuria. Additional clinical data (e.g., urine
albumin-to-creatinine ratio) were nei-
ther collected nor adjudicated.
Retinopathy events were classified

as an expected diabetes complication
and subject to pragmatic prospective
data collection at each visit via a yes-
or-no answer to the following question:
“Since the previous visit, did the patient
experience any new or worsening occur-
rences of retinopathy?” Additional clin-
ical data (e.g., retinal exam results) for
this end point were neither collected nor
adjudicated.

Statistical Analysis
The intention-to-treat population was
used for all analyses. Baseline character-
istics were summarized, using mean
(61 SD), median (25th, 75th percentile),
or number (proportion), as appropriate,
for continuous and categorical variables.
The overall least squares mean differ-
ence (LSMD) in eGFR between the EQW
and placebo treatment groups was cal-
culated for participants with a baseline
value and at least one follow-up value.
Changes in HbA1c early after randomiza-
tion were calculated for patients with
baseline and follow-up values within the
1st year, for use in the retinopathy sub-
group analyses; the value closest to
6 months after baseline (capped at
1 year) was chosen. Subgroups accord-
ing to baseline renal function were
eGFR ,60 and $60 mL/min/1.73 m2,
CKD stage 1 (eGFR $90 mL/min/
1.73 m2), CKD stage 2 (eGFR 60–
89 mL/min/1.73 m2), CKD stage 3a
(eGFR 45–59 mL/min/1.73 m2), CKD
stage 3b (eGFR 30–44 mL/min/
1.73 m2), CKD stage 4 (eGFR 15–
29 mL/min/1.73 m2), and CKD stage
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5 (eGFR ,15 mL/min/1.73 m2). Sub-
groups for CKD stages 4 (n 5 14) and
5 (n5 0) were too small to allow robust
analyses and have been excluded from
this report. Although few of the individ-
uals categorized as having CKD stage 1 or
stage 2 had concomitant albuminuria, as
classically defined (12,13), we use CKD
staging nomenclature throughout for
descriptive simplicity.
The impact of EQW on the two renal

composite outcomeswas estimatedwith

interval-censored time-to-event models
to account for clustering of eGFR collec-
tion dates around study visits. Unad-
justed models and models adjusted for
prespecified variables including age, sex,
ethnicity, race, region, diabetes duration,
history of CV event, diabetes therapy at
baseline (including insulin use), baseline
HbA1c, eGFR, and BMI are presented.
Unadjusted and adjusted Cox regression
modelswereused toestimate the impact
of treatment on all other end points with

continuous dates of events. Only unad-
justed models are presented unless ad-
justment resulted in notably different
changes.

RESULTS

Baseline characteristics by CKD stage for
the 14,691 participants included in the
intention-to-treat analysis were well bal-
anced between treatment groups (data
not shown) and broadly demonstrate

Table 1—Baseline characteristics of participants by CKD stage

Stage 1 (n 5 4,268) Stage 2 (n 5 7,246) Stage 3a (n 5 2,288) Stage 3b (n 5 889)

Age (years) 57.7 (9.3) 62.3 (8.7) 65.9 (8.4) 68.0 (8.5)
,65 3,260/4,268 (76.4) 4,278/7,246 (59.0) 945/2,288 (41.3) 300/889 (33.7)
$65 1,008/4,268 (23.6) 2,968/7,246 (41.0) 1,343/2,288 (58.7) 589/889 (66.3)
$75 125/4,268 (2.9) 547/7,246 (7.5) 353/2,288 (15.4) 215/889 (24.2)

Sex
Male 2,814/4,268 (65.9) 4,487/7,246 (61.9) 1,330/2,288 (58.1) 485/889 (54.6)
Female 1,454/4,268 (34.1) 2,759/7,246 (38.1) 958/2,288 (41.9) 404/889 (45.4)

Race
White 3,093/4,267 (72.5) 5,578/7,243 (77.0) 1,777/2,287 (77.7) 678/889 (76.3)
Asian 493/4,267 (11.6) 653/7,243 (9.0) 211/2,287 (9.2) 90/889 (10.1)
Black 318/4,267 (7.5) 398/7,243 (5.5) 107/2,287 (4.7) 51/889 (5.7)
Hispanic 333/4,267 (7.8) 554/7,243 (7.6) 178/2,287 (7.8) 66/889 (7.4)
Other 30/4,267 (0.7) 60/7,243 (0.8) 14/2,287 (0.6) 4/889 (0.5)

Region
Europe 2,172/4,268 (50.9) 3,342/7,246 (46.1) 923/2,288 (40.3) 325/889 (36.6)
North America 973/4,268 (22.8) 1,753/7,246 (24.2) 678/2,288 (29.6) 288/889 (32.4)
Latin America 628/4,268 (14.7) 1,438/7,246 (19.8) 473/2,288 (20.7) 181/889 (20.4)
Asia Pacific 495/4,268 (11.6) 713/7,246 (9.8) 214/2,288 (9.4) 95/889 (10.7)

Duration of type 2 diabetes (years)
Mean (SD) 11.4 (7.2) 13.0 (8.2) 14.8 (8.9) 17.4 (9.4)
Median (Q1, Q3) 10.0 (6.0, 15.0) 12.0 (7.0, 18.0) 14.0 (8.0, 20.0) 16.0 (11.0, 22.0)
,5 717/4,249 (16.9) 1,001/7,231 (13.8) 225/2,275 (9.9) 57/883 (6.5)
$5 to ,15 2,333/4,249 (54.9) 3,571/7,231 (49.4) 1,020/2,275 (44.8) 312/883 (35.3)
$15 1,199/4,249 (28.2) 2,659/7,231 (36.8) 1,030/2,275 (45.3) 514/883 (58.2)

BMI (kg/m2) 32.8 (6.6) 32.6 (6.3) 32.8 (6.4) 32.8 (6.7)

Prior CV event 2,799/4,268 (65.6) 5,364/7,246 (74.0) 1,864/2,288 (81.5) 763/889 (85.8)
Coronary artery disease 1,969/4,268 (46.1) 3,825/7,246 (52.8) 1,365/2,288 (59.7) 607/889 (68.3)
Cerebrovascular disease 617/4,267 (14.5) 1,202/7,246 (16.6) 464/2,288 (20.3) 218/888 (24.5)
Peripheral arterial disease 685/4,267 (16.1) 1,404/7,246 (19.4) 499/2,288 (21.8) 206/889 (23.2)

Prior congestive heart failure
Yes 558/4,268 (13.1) 1,113/7,246 (15.4) 477/2,288 (20.8) 232/888 (26.1)
No 3,710/4,268 (86.9) 6,133/7,246 (84.6) 1,811/2,288 (79.2) 656/888 (73.9)

Cigarette smoking status
Current 691/4,266 (16.2) 786/7,245 (10.8) 188/2,287 (8.2) 50/886 (5.6)
Former 1,554/4,266 (36.4) 2,904/7,245 (40.1) 909/2,287 (39.7) 396/886 (44.7)
Never 2,021/4,266 (47.4) 3,555/7,245 (49.1) 1,190/2,287 (52.0) 440/886 (49.7)

HbA1c
% 8.2 (1.0) 8.1 (1.0) 8.1 (1.0) 8.1 (1.0)
mmol/mol 65.6 (10.6) 65.0 (10.4) 65.0 (10.5) 64.9 (10.4)
,8% (,63.93 mmol/mol) 2,019/4,243 (47.6) 3,557/7,208 (49.3) 1,122/2,281 (49.2) 442/886 (49.9)
$8% ($63.93 mmol/mol) 2,224/4,243 (52.4) 3,651/7,208 (50.7) 1,159/2,281 (50.8) 444/886 (50.1)

eGFR (mL/min/1.73 m2) 107.1 (18.5) 74.4 (8.6) 53.2 (4.2) 38.8 (4.0)

Albuminuria 558/3,120 (17.9) 1,122/5,277 (21.3) 445/1,680 (26.5) 221/650 (34.0)
Microalbuminuria 478/3,120 (15.3) 931/5,277 (17.6) 321/1,680 (19.1) 135/650 (20.8)
Macroalbuminuria 80/3,120 (2.6) 191/5,277 (3.6) 124/1,680 (7.4) 86/650 (13.2)

Unless otherwise indicated, data are the mean (SD) or number with the characteristic/Number in the column subgroup with nonmissing data
(proportion), as appropriate for continuous and categorical variables.



advancing age, increasing duration of
diabetes, and increasing burden of co-
morbiditieswithadvancingCKD(Table1).
To inform the retinopathy subgroup
analysis, participants were divided into
tertiles according to the degree of
HbA1c change achieved during the first
6 months of study enrollment: 13.5% of
the EQW group and 4.4% of the placebo
group achieved an HbA1c reduction
.2% (Supplementary Table 1).

Microvascular Outcomes by Treatment
Group
Mean change in eGFR from baseline was
similar with EQW treatment and placebo
during follow-up in 13,844 patients
(LSMD 0.21 mL/min/1.73 m2 [95%
CI 20.27 to 0.70]; P 5 0.39). Among
14,269 participants without macroalbu-
minuria at baseline, incident macroalbu-
minuria occurred in 2.2% of patients
in the EQW group and 2.5% of those
in the placebo group (HR 0.87 [95% CI
0.70–1.07]; P 5 0.19) (Table 2). The
hazard of experiencing the renal com-
posite 1 end point, driven by eGFR decline
events, was numerically but not statis-
tically significantly reduced with EQW

(Table 2). The hazard of experiencing
the renal composite 2 end point, driven
by eGFR decline and macroalbuminuria
events, was significantly reduced with
EQW in adjusted, but not unadjusted,
models (Table 2). The impact of treat-
ment was similar across all CKD stages,
without evidence for interaction (Supple-
mentary Table 2).
EQW treatment did not increase the

risk for retinopathy events among the
overall population (HR0.89 [95%CI 0.74–
1.07];P50.22) (Table2). Inparticular, no
significant impact of EQW was identified
in subgroups defined by tertiles of initial
HbA1c change frombaseline to 6months,
in those whose HbA1c decreased by.2%
from baseline to 6 months, or in those
with a history of retinopathy.

CV Safety Outcomes by Baseline Renal
Status
CV safety outcomes were calculated for
thosewith a baseline eGFR$60mL/min/
1.73 m2 (n 5 11,514) or ,60 mL/min/
1.73 m2 (n 5 3,177) and for those
with CKD stages 1, 2, 3a, and 3b (Fig.
1 and Supplementary Tables 2 and 3). In

patients with eGFR ,60 mL/min/
1.73 m2 (CKD stage 3a or 3b), EQW
had a neutral impact on CV outcomes.
In univariate analyses unadjusted for
multiplicity, risk was significantly re-
duced for MACE (HR 0.86 [95% CI
0.77–0.97]), all-cause mortality (HR
0.78 [95% CI 0.67–0.91]), CV-related
death (HR 0.77 [95% CI 0.64–0.93]),
and fatal or nonfatal stroke (HR 0.74
[95% CI 0.58–0.93]) in those with base-
line eGFR $60 mL/min/1.73 m2 and
treated with EQW. P values for inter-
action were significant only for fatal
or nonfatal stroke (P for interaction 5
0.035) and CV-related death (P for inter-
action 5 0.031) (Fig. 1 and Supple-
mentary Table 3). In analyses by CKD
stage, risk reductions were nominally
significant for MACE, fatal or nonfatal
stroke, CV-related death, and all-cause
mortality for CKD stage 2 and CKD stage
1; however, none of the P values for
interaction for all event types by CKD
stagewere statistically significant, except
for hospitalization for heart failure (P 5
0.014), but risk was not significantly re-
duced in individual CKD stage subgroups
(Supplementary Table 2).

Table 2—Microvascular outcomes by randomized treatment group

EQW Placebo HR (95% CI) P value

New macroalbuminuria 158/7,132 (2.2) 180/7,137 (2.5) 0.87 (0.70–1.07) 0.19
Adjusted HR* 0.84 (0.67–1.04) 0.11

Renal composite 1 246/6,459 (3.8) 273/6,466 (4.2) 0.88 (0.74–1.05) 0.16
Adjusted HR* 0.87 (0.73–1.04) 0.13
40% decline in eGFR 239 266
Renal replacement 7 7
Renal death 0 0

Renal composite 2 366/6,259 (5.8) 407/6,230 (6.5) 0.88 (0.76–1.01) 0.07
Adjusted HR* 0.85 (0.74–0.98) 0.03
40% decline in eGFR 216 228
Renal replacement 7 6
Renal death 0 0
New macroalbuminuria 143 173

Postbaseline retinopathy
First event 214/7,356 (2.9) 237/7,396 (3.2) 0.89 (0.74–1.07) 0.22
Adjusted HR* 0.89 (0.74–1.08) 0.24

All events 244 275
By HbA1c change (unadjusted) 0.853
Tertile 1 38/1,247 (3.1) 82/2,783 (3.0) 1.08 (0.74–1.59)
Tertile 2 47/1,903 (2.5) 49/1,966 (2.5) 0.99 (0.67–1.48)
Tertile 3 78/2,909 (2.7) 36/1,264 (2.9) 0.92 (0.62–1.37)

By HbA1c decrease .2% 0.614
Yes 25/814 (3.1) 7/260 (2.7) 1.15 (0.50–2.66)
No 138/5,245 (2.6) 160/5,753 (2.8) 0.93 (0.74–1.17)

History of retinopathy at baseline (unadjusted) 0.483**
Yes 59/1,270 (4.6) 71/1,246 (5.7) 0.79 (0.56–1.11)
No 155/6,085 (2.5) 166/6,150 (2.7) 0.93 (0.75–1.16)

Data are the number with the event/total population (%) unless otherwise indicated. *Analyses were adjusted for age, sex, ethnicity, race, region,
duration of diabetes, history of CV event, insulin use, baseline HbA1c and eGFR, and BMI. **P value for interaction by HbA1c tertile.
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CONCLUSIONS

Amongpatientswith orwithout previous
CV events who were receiving usual care
for their type 2 diabetes, the addition of
EQW was not associated with clinically
meaningful change in eGFR and did not
affect renal composite outcomes in un-
adjusted analyses. In analyses adjusted
for demographic characteristics and dis-
ease severity, EQWwas associatedwith a
significant 15% reduction of relative risk
in renal composite 2, driven mainly by a
lower incidence of macroalbuminuria in
the EQW group. EQW had no impact on
the incidence of retinopathy overall or in
any subgroup, and the CV safety of EQW
was confirmed across a wide range of
renal function.
Guarding against nephropathy in

type 2 diabetes is a major tenant of
therapy to prevent microvascular
complications. SGLT-2 inhibitorsd
shown in several large outcomes trials

(BI 10773 [Empagliflozin] Cardiovascular
Outcome Event Trial in Type 2 Diabetes
Mellitus Patients [EMPA-REGOUTCOME]
[14], Canagliflozin Cardiovascular Assess-
ment Study [CANVAS] [15], Canagliflozin
and Renal Events in Diabetes with Estab-
lished Nephropathy Clinical Evaluation
[CREDENCE] [16], Dapagliflozin Effect on
Cardiovascular Events–Thrombolysis in
Myocardial Infarction 58 [DECLARE-
TIMI 58] [17]) to reduce the incidence
of nephropathy by both reducing
proteinuria and delaying decline in glo-
merularfiltrationdareconsideredsecond-
line therapy (aftermetformin) forpatients
with diabetes and increased risk for
progression of CKD (18). GLP-1 RAs, which
affect the progression of proteinuria but
have little effect on glomerular filtration
(19), follow in the treatment algo-
rithm for those who do not tolerate
SGLT-2 inhibitors or in whom they are
contraindicated. Both liraglutide (8,20)

and semaglutide (21) have reduced the
risk for nephropathy in CV outcomes
trials, whereas EQW and albiglutide
demonstrated renal safety (22). Al-
though the analyses shown here
demonstrate a reduction in a renal com-
posite comprising a 40% eGFR decline,
incident macroalbuminuria, renal re-
placement, or renal death, these results
were adjusted for covariates and were
not adjusted for multiplicity. Limita-
tions to interpretation are introduced
by the pragmatic data collection policy
in EXSCEL. Data on eGFR were collected
only as available from routine outpatient
clinical surveillance, resulting in missing
data; 93% of EXSCEL participants had
both baseline and follow-up eGFR values
recorded. Similarly, incomplete data ex-
ist regarding baseline albuminuria status,
an important predictive variable for both
CV and renal outcomes (23). Categori-
cal data for baseline albuminuria status

Figure 1—CV safety outcomes by baseline renal function: MACE (A) and all-cause mortality (B). MACE-3, three-item MACE composite.



(micro-, macro-, or normoalbuminuria)
were not collected for 27% of EXSCEL
participants, and quantitative measures
of albuminuria were not routinely
collected.
Results from other CV outcomes trials

have raised concerns about the impact of
GLP-1 RAs on retinopathy. Both sema-
glutide, in the Trial to Evaluate Cardio-
vascular and Other Long-term Outcomes
With Semaglutide in Subjectswith Type 2
Diabetes (SUSTAIN-6) (HR 1.76 [95% CI
1.11–2.78]) (21), and liraglutide, in the
Liraglutide Effect and Action in Diabetes:
Evaluation of Cardiovascular Outcome
Results (LEADER) trial (HR 1.15 [95% CI
0.87–1.52]) (20), showed higher rates of
retinopathy in groups treatedwith aGLP-
1 RA than in those receiving the placebo.
In both trials, the risk of retinopathy was
highest in those with a history of reti-
nopathy; this high risk may have been
related to rapid HbA1c lowering early
after randomization rather than to an
independent adverse effect of the GLP-1
RA (24). Indeed, there are reasons to
believe that GLP-1 RA therapies may be
beneficial for patients with diabetic ret-
inopathy. The GLP-1 receptor is ex-
pressed in the retina, and animal
studies have suggested that GLP-1 RAs
decrease apoptosis of retinal nerve cells
and provide protection against damage
to the blood-retinal barrier (25–28). It is
encouraging that the Harmony Out-
comes trial, evaluating albiglutide, did
not demonstrate evidence of increased
risk of retinopathy (22), and EXSCEL
showed no statistically increased risk,
regardless of the initial HbA1c change.
However, there are limitations in ascer-
taining retinopathy events for all of these
studies. Because none of the studies
were designed or powered to investigate
retinal outcomes, event numbers are
small, and the results of fundoscopic
exams and retinal images were not
collected during follow-up. For EXSCEL,
collection of retinopathy events was
pragmatic, prospectively ascertained
from a yes/no question; retinal imaging
or other fundoscopic exam results were
not collected.
GLP-1 RAs are effective treatments for

type 2 diabetes, lowering glucose with
minimal risk for hypoglycemia and often
with accompanying weight loss (29).
Agents in this class have consistently
demonstrated CV safety (30), and some
have shown CV benefit (20–22,31). Our

analysis demonstrates a consistent CV
safety profile for EQWover the spectrum
of renal function studied (patients with
eGFR ,30 mL/min/1.73 m2 at baseline
were excluded), without clear evidence
of benefit. The suggestion of a greater
impact on CV outcomes in patients with
eGFR$60 mL/min/1.73 m2 is consistent
with subgroup analyses performed in
both SUSTAIN-6 with semaglutide and
the Harmony Outcomes trial with albi-
glutide (but not in LEADER with liraglu-
tide); however, these analyses were not
adjusted for multiplicity (18–20). These
findings support revised treatment
guidelines advocating a broader use of
GLP-1 RAs as the first injectable therapy
for most patients (18).
With the increasing prominence of

GLP-1 RAs in the treatment of type 2
diabetes, leveraging available long-term
outcomes data to characterize the safety
profile of drugswithin the class can guide
medication selection for individual pa-
tients. For EQW, the consistency of the
CV and renal safety profiles across the
range of renal function studied provides
reassurance as the drug becomes used
more widely, for example, in patients
with established atherosclerotic CV dis-
ease or before the development of CV
disease or CKD in patients who require
glucose lowering but have a compelling
need to minimize hypoglycemia or
weight gain.
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