321 research outputs found

    Analysis of Round Off Errors with Reversibility Test as a Dynamical Indicator

    Full text link
    We compare the divergence of orbits and the reversibility error for discrete time dynamical systems. These two quantities are used to explore the behavior of the global error induced by round off in the computation of orbits. The similarity of results found for any system we have analysed suggests the use of the reversibility error, whose computation is straightforward since it does not require the knowledge of the exact orbit, as a dynamical indicator. The statistics of fluctuations induced by round off for an ensemble of initial conditions has been compared with the results obtained in the case of random perturbations. Significant differences are observed in the case of regular orbits due to the correlations of round off error, whereas the results obtained for the chaotic case are nearly the same. Both the reversibility error and the orbit divergence computed for the same number of iterations on the whole phase space provide an insight on the local dynamical properties with a detail comparable with other dynamical indicators based on variational methods such as the finite time maximum Lyapunov characteristic exponent, the mean exponential growth factor of nearby orbits and the smaller alignment index. For 2D symplectic maps the differentiation between regular and chaotic regions is well full-filled. For 4D symplectic maps the structure of the resonance web as well as the nearby weakly chaotic regions are accurately described.Comment: International Journal of Bifurcation and Chaos, 201

    Ergodic directions for billiards in a strip with periodically located obstacles

    Get PDF
    We study the size of the set of ergodic directions for the directional billiard flows on the infinite band R×[0,h]\R\times [0,h] with periodically placed linear barriers of length 0<λ<h0<\lambda<h. We prove that the set of ergodic directions is always uncountable. Moreover, if λ/h(0,1)\lambda/h\in(0,1) is rational the Hausdorff dimension of the set of ergodic directions is greater than 1/2. In both cases (rational and irrational) we construct explicitly some sets of ergodic directions.Comment: The article is complementary to arXiv:1109.458

    Distribution of periodic points of polynomial diffeomorphisms of C^2

    Full text link
    This paper deals with the dynamics of a simple family of holomorphic diffeomorphisms of \C^2: the polynomial automorphisms. This family of maps has been studied by a number of authors. We refer to [BLS] for a general introduction to this class of dynamical systems. An interesting object from the point of view of potential theory is the equilibrium measure μ\mu of the set KK of points with bounded orbits. In [BLS] μ\mu is also characterized dynamically as the unique measure of maximal entropy. Thus μ\mu is also an equilibrium measure from the point of view of the thermodynamical formalism. In the present paper we give another dynamical interpretation of μ\mu as the limit distribution of the periodic points of ff

    Invariant sets for discontinuous parabolic area-preserving torus maps

    Get PDF
    We analyze a class of piecewise linear parabolic maps on the torus, namely those obtained by considering a linear map with double eigenvalue one and taking modulo one in each component. We show that within this two parameter family of maps, the set of noninvertible maps is open and dense. For cases where the entries in the matrix are rational we show that the maximal invariant set has positive Lebesgue measure and we give bounds on the measure. For several examples we find expressions for the measure of the invariant set but we leave open the question as to whether there are parameters for which this measure is zero.Comment: 19 pages in Latex (with epsfig,amssymb,graphics) with 5 figures in eps; revised version: section 2 rewritten, new example and picture adde

    Cross sections for geodesic flows and \alpha-continued fractions

    Full text link
    We adjust Arnoux's coding, in terms of regular continued fractions, of the geodesic flow on the modular surface to give a cross section on which the return map is a double cover of the natural extension for the \alpha-continued fractions, for each α\alpha in (0,1]. The argument is sufficiently robust to apply to the Rosen continued fractions and their recently introduced \alpha-variants.Comment: 20 pages, 2 figure

    A series of coverings of the regular n-gon

    Full text link
    We define an infinite series of translation coverings of Veech's double-n-gon for odd n greater or equal to 5 which share the same Veech group. Additionally we give an infinite series of translation coverings with constant Veech group of a regular n-gon for even n greater or equal to 8. These families give rise to explicit examples of infinite translation surfaces with lattice Veech group.Comment: A missing case in step 1 in the proof of Thm. 1 b was added. (To appear in Geometriae Dedicata.

    Observable Optimal State Points of Sub-additive Potentials

    Full text link
    For a sequence of sub-additive potentials, Dai [Optimal state points of the sub-additive ergodic theorem, Nonlinearity, 24 (2011), 1565-1573] gave a method of choosing state points with negative growth rates for an ergodic dynamical system. This paper generalizes Dai's result to the non-ergodic case, and proves that under some mild additional hypothesis, one can choose points with negative growth rates from a positive Lebesgue measure set, even if the system does not preserve any measure that is absolutely continuous with respect to Lebesgue measure.Comment: 16 pages. This work was reported in the summer school in Nanjing University. In this second version we have included some changes suggested by the referee. The final version will appear in Discrete and Continuous Dynamical Systems- Series A - A.I.M. Sciences and will be available at http://aimsciences.org/journals/homeAllIssue.jsp?journalID=

    Finite type approximations of Gibbs measures on sofic subshifts

    Full text link
    Consider a H\"older continuous potential ϕ\phi defined on the full shift A^\nn, where AA is a finite alphabet. Let X\subset A^\nn be a specified sofic subshift. It is well-known that there is a unique Gibbs measure μϕ\mu_\phi on XX associated to ϕ\phi. Besides, there is a natural nested sequence of subshifts of finite type (Xm)(X_m) converging to the sofic subshift XX. To this sequence we can associate a sequence of Gibbs measures (μϕm)(\mu_{\phi}^m). In this paper, we prove that these measures weakly converge at exponential speed to μϕ\mu_\phi (in the classical distance metrizing weak topology). We also establish a strong mixing property (ensuring weak Bernoullicity) of μϕ\mu_\phi. Finally, we prove that the measure-theoretic entropy of μϕm\mu_\phi^m converges to the one of μϕ\mu_\phi exponentially fast. We indicate how to extend our results to more general subshifts and potentials. We stress that we use basic algebraic tools (contractive properties of iterated matrices) and symbolic dynamics.Comment: 18 pages, no figure
    corecore