164 research outputs found

    Extensive expansion and diversification of the chemokine gene family in zebrafish: Identification of a novel chemokine subfamily CX

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The chemokine family plays important roles in cell migration and activation. In humans, at least 44 members are known. Based on the arrangement of the four conserved cysteine residues, chemokines are now classified into four subfamilies, CXC, CC, XC and CX3C. Given that zebrafish is an important experimental model and teleost fishes constitute an evolutionarily diverse group that forms half the vertebrate species, it would be useful to compare the zebrafish chemokine system with those of mammals. Prior to this study, however, only incomplete lists of the zebrafish chemokine genes were reported.</p> <p>Results</p> <p>We systematically searched chemokine genes in the zebrafish genome and EST databases, and identified more than 100 chemokine genes. These genes were CXC, CC and XC subfamily members, while no CX3C gene was identified. We also searched chemokine genes in pufferfish fugu and <it>Tetraodon</it>, and found only 18 chemokine genes in each species. The majority of the identified chemokine genes are unique to zebrafish or teleost fishes. However, several groups of chemokines are moderately similar to human chemokines, and some chemokines are orthologous to human homeostatic chemokines CXCL12 and CXCL14. Zebrafish also possesses a novel species-specific subfamily consisting of five members, which we term the CX subfamily. The CX chemokines lack one of the two N-terminus conserved cysteine residues but retain the third and the fourth ones. (Note that the XC subfamily only retains the second and fourth of the signature cysteines residues.) Phylogenetic analysis and genome organization of the chemokine genes showed that successive tandem duplication events generated the CX genes from the CC subfamily. Recombinant CXL-chr24a, one of the CX subfamily members on chromosome 24, showed marked chemotactic activity for carp leukocytes. The mRNA was expressed mainly during a certain period of the embryogenesis, suggesting its role in the zebrafish development.</p> <p>Conclusion</p> <p>The phylogenic and genomic organization analyses suggest that a substantial number of chemokine genes in zebrafish were generated by zebrafish-specific tandem duplication events. During such duplications, a novel chemokine subfamily termed CX was generated in zebrafish. Only two human chemokines CXCL12 and CXCL14 have the orthologous chemokines in zebrafish. The diversification observed in the numbers and sequences of chemokines in the fish may reflect the adaptation of the individual species to their respective biological environment.</p

    One-dimensional Ablation Analysis of Lightweight CFRP Ablators with Coking

    Get PDF
    The coking phenomenon within a lightweight carbon-phenolic ablator exposed to the heating environment of air is investigated. The existing one-dimensional charring ablation analysis code is modified so that the coking behavior of the ablator can be calculated as well as the thermal response behavior within a lightweight carbon-phenolic ablator. The mass conservation equations for a pyrolysis gas and carbon in the gas are given. The energy equation including the coking process is also presented. The measured density distributions of some arc-heated CFRP ablator samples are compared with those calculated by the ablation analysis code, from which good agreement is obtained. The density profiles with and without coking are compared. The effect of temperature dependency of carbon mass fraction in a pyrolysis gas in the coking equation upon the density profile is examined. The effect of heating rate upon the density distribution in an ablator is also examined. The effect of coking upon the surface recession is studied analytically and experimentally.31st International Symposium on Space Technology and Science (ISTS), June 3-9, 2017, Matsuyama, Ehime , Japa

    Comprehensive detection of human terminal oligo-pyrimidine (TOP) genes and analysis of their characteristics

    Get PDF
    Although the knowledge accumulated on the transcriptional regulations of eukaryotes is significant, the knowledge on their translational regulations remains limited. Thus, we performed a comprehensive detection of terminal oligo-pyrimidine (TOP), which is one of the well-characterized cis-regulatory motifs for translational controls located immediately downstream of the transcriptional start sites of mRNAs. Utilizing our precise 5′-end information of the full-length cDNAs, we could screen 1645 candidate TOP genes by position specific matrix search. Among them, not only 75 out of 78 ribosomal protein genes but also eight previously identified non-ribosomal-protein TOP genes were included. We further experimentally validated the translational activities of 83 TOP candidate genes. Clear translational regulations exerted on the stimulation of 12-O-tetradecanoyl-1-phorbol-13-acetate for at least 41 of them was observed, indicating that there should be a few hundreds of human genes which are subjected to regulation at translation levels via TOPs. Our result suggests that TOP genes code not only formerly characterized ribosomal proteins and translation-related proteins but also a wider variety of proteins, such as lysosome-related proteins and metabolism-related proteins, playing pivotal roles in gene expression controls in the majority of cellular mRNAs
    corecore