11 research outputs found

    Gastrokine-1, an anti-amyloidogenic protein secreted by the stomach, regulates diet-induced obesity

    Get PDF
    Obesity and its sequelae have a major impact on human health. The stomach contributes to obesity in ways that extend beyond its role in digestion, including through effects on the microbiome. Gastrokine-1 (GKN1) is an anti-amyloidogenic protein abundantly and specifically secreted into the stomach lumen. We examined whether GKN1 plays a role in the development of obesity and regulation of the gut microbiome. Gkn1−/− mice were resistant to diet-induced obesity and hepatic steatosis (high fat diet (HFD) fat mass (g) = 10.4 ± 3.0 (WT) versus 2.9 ± 2.3 (Gkn1−/−) p < 0.005; HFD liver mass (g) = 1.3 ± 0.11 (WT) versus 1.1 ± 0.07 (Gkn1−/−) p < 0.05). Gkn1−/− mice also exhibited increased expression of the lipid-regulating hormone ANGPTL4 in the small bowel. The microbiome of Gkn1−/− mice exhibited reduced populations of microbes implicated in obesity, namely Firmicutes of the class Erysipelotrichia. Altered metabolism consistent with use of fat as an energy source was evident in Gkn1−/− mice during the sleep period. GKN1 may contribute to the effects of the stomach on the microbiome and obesity. Inhibition of GKN1 may be a means to prevent obesity

    Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model. Genome-wide association meta-analysis of AAA identifies 121 independent risk loci and highlights potential therapeutic targets such as proprotein convertase, subtilisin/kexin-type 9 (PCSK9)

    Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target

    No full text
    Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model

    Patient Sex, Reproductive Status, and Synthetic Hormone Use Associate With Histologic Severity of Nonalcoholic&nbsp;Steatohepatitis.

    No full text
    Background &amp; aimsSex and sex hormones can affect responses of patients with nonalcoholic fatty liver disease (NAFLD) to metabolic stress and development of hepatocyte injury and inflammation.MethodsWe collected data from 3 large U.S. studies of patients with NAFLD (between October 2004 and June 2013) to assess the association between histologic severity and sex, menopause status, synthetic hormone use, and menstrual abnormalities in 1112 patients with a histologic diagnosis of NAFLD. We performed logistic or ordinal logistic regression models, adjusting for covariates relevant to an increase of hepatic metabolic stress.ResultsPremenopausal women were at an increased risk of lobular inflammation, hepatocyte ballooning, and Mallory-Denk bodies than men and also at an increased risk of lobular inflammation and Mallory-Denk bodies than postmenopausal women (P &lt; .01). Use of oral contraceptives was associated with an increased risk of lobular inflammation and Mallory-Denk bodies in premenopausal women, whereas hormone replacement therapy was associated with an increased risk of lobular inflammation in postmenopausal women (P &lt; .05).ConclusionsBeing a premenopausal woman or a female user of synthetic hormones is associated with increased histologic severity of hepatocyte injury and inflammation among patients with NAFLD at given levels of hepatic metabolic stress

    Patient Sex, Reproductive Status, and Synthetic Hormone Use Associate With Histologic Severity of Nonalcoholic Steatohepatitis

    No full text
    corecore