527 research outputs found
Weak Coupling Among Barrier Loci and Waves of Neutral and Adaptive Introgression Across an Expanding Hybrid Zone
Hybridization can serve as an evolutionary stimulus, but we have little understanding of introgression at early stages of hybrid zone formation. We analyze reproductive isolation and introgression between a range-limited and a widespread species. Reproductive barriers are estimated based on differences in flowering time, ecogeographic distributions, and seed set from crosses. We find an asymmetrical mating barrier due to cytonuclear incompatibility that is consistent with observed clusters of coincident and concordant tension zone clines (barrier loci) for mtDNA haplotypes and nuclear SNPs. These groups of concordant clines are spread across the hybrid zone, resulting in weak coupling among barrier loci and extensive introgression. Neutral clines had nearly equal introgression into both species’ ranges, whereas putative cases of adaptive introgression had exceptionally wide clines with centers shifted toward one species. Analyses of cline shape indicate that secondary contact was initiated within the last 800 generations with the per-generation dispersal between 200 and 400 m, and provide some of the first estimates of the strength of selection required to account for observed levels of adaptive introgression. The weak species boundary between these species appears to be in early stages of dissolution, and ultimately will precipitate genetic swamping of the range-limited species
Heritability of working memory brain activation
Although key to understanding individual variation in task-related brain activation, the genetic contribution to these individual differences remains largely unknown. Here we report voxel-by-voxel genetic model fitting in a large sample of 319 healthy, young adult, human identical and fraternal twins (mean ± SD age, 23.6 ± 1.8 years) who performed an n-back working memory task during functional magnetic resonance imaging (fMRI) at a high magnetic field (4 tesla). Patterns of task-related brain response (BOLD signal difference of 2-back minus 0-back) were significantly heritable, with the highest estimates (40–65%) in the inferior, middle, and superior frontal gyri, left supplementary motor area, precentral and postcentral gyri, middle cingulate cortex, superior medial gyrus, angular gyrus, superior parietal lobule, including precuneus, and superior occipital gyri. Furthermore, high test-retest reliability for a subsample of 40 twins indicates that nongenetic variance in the fMRI brain response is largely due to unique environmental influences rather than measurement error. Individual variations in activation of the working memory network are therefore significantly influenced by genetic factors. By establishing the heritability of cognitive brain function in a large sample that affords good statistical power, and using voxel-by-voxel analyses, this study provides the necessary evidence for task-related brain activation to be considered as an endophenotype for psychiatric or neurological disorders, and represents a substantial new contribution to the field of neuroimaging genetics. These genetic brain maps should facilitate discovery of gene variants influencing cognitive brain function through genome-wide association studies, potentially opening up new avenues in the treatment of brain disorders
Factors Associated With Nonadherence to Antiretroviral Therapy Among Young People Living With Perinatally Acquired HIV in England
Young people living with perinatally acquired HIV may be at risk of poor adherence to antiretroviral therapy; identification of predictors, using a conceptual framework approach proposed previously by others, is important to identify those at higher risk. In 261 young people with perinatally acquired HIV in England, 70 (27%) reported 3-day nonadherence, 82 (31%) last month nonadherence, and 106 (41%) nonadherence on either measure. Of those reporting nonadherence on both measures, 52% (23/44) had viral load of ,50 copies/ml, compared with 88% (127/145) of those reported being fully adherent. In multivariable analysis, young person and medication theme factors were associated with nonadherence. The main predictors of 3-day nonadherence were antiretroviral therapy containing a boosted protease inhibitor and poorer quality of life. Predictors of last month nonadherence were having told more people about one’s HIV status, worse self-perception about having HIV, and boosted protease inhibitor–based regimens. The consistency of individual young person and medication factors in predicting nonadherence gives insight into where interventions may best be targeted to improve adherence
Response to Comment on "A Non-Interacting Low-Mass Black Hole -- Giant Star Binary System"
van den Heuvel & Tauris argue that if the red giant star in the system 2MASS
J05215658+4359220 has a mass of 1 solar mass (M), then its unseen
companion could be a binary composed of two 0.9 M stars, making a
triple system. We contend that the existing data are most consistent with a
giant of mass M, implying a black hole companion of
M.Comment: 5 page
Examining a Peak-Luminosity/Decline-Rate Relationship for Tidal Disruption Events
We compare the luminosity, radius, and temperature evolution of the
UV/optical blackbodies for 21 well-observed tidal disruption events (TDEs), 8
of which were discovered by the All-Sky Automated Survey for Supernovae. We
find that the blackbody radii generally increase prior to peak and slowly
decline at late times. The blackbody temperature evolution is generally flat,
with a few objects showing small-scale variations. The bolometric UV/optical
luminosities generally evolve smoothly and flatten out at late times. Finally,
we find an apparent correlation between the peak luminosity and the decline
rate of TDEs. This relationship is strongest when comparing the peak luminosity
to its decline over 40 days. A linear fit yields in cgs, where
.Comment: 10 pages, 4 figures. Updated to reflect changes made in the published
ApJL version. Six new objects added to sample. Updated video description can
be found at https://youtu.be/TtZU22eyHv
Modeling of the hemodynamic responses in block design fMRI studies
The hemodynarnic response function (HRF) describes the local response of brain vasculature to functional activation. Accurate HRF modeling enables the investigation of cerebral blood flow regulation and improves our ability to interpret fMRI results. Block designs have been used extensively as fMRI paradigms because detection power is maximized; however, block designs are not optimal for HRF parameter estimation. Here we assessed the utility of block design fMRI data for HRF modeling. The trueness (relative deviation), precision (relative uncertainty), and identifiability (goodness-of-fit) of different HRF models were examined and test-retest reproducibility of HRF parameter estimates was assessed using computer simulations and fMRI data from 82 healthy young adult twins acquired on two occasions 3 to 4 months apart. The effects of systematically varying attributes of the block design paradigm were also examined. In our comparison of five HRF models, the model comprising the sum of two gamma functions with six free parameters had greatest parameter accuracy and identifiability. Hemodynamic response function height and time to peak were highly reproducible between studies and width was moderately reproducible but the reproducibility of onset time was low. This study established the feasibility and test-retest reliability of estimating HRF parameters using data from block design fMRI studies
Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS
We present the discovery and early evolution of ASASSN-19bt, a tidal
disruption event (TDE) discovered by the All-Sky Automated Survey for
Supernovae (ASAS-SN) at a distance of Mpc and the first TDE to be
detected by TESS. As the TDE is located in the TESS Continuous Viewing Zone,
our dataset includes 30-minute cadence observations starting on 2018 July 25,
and we precisely measure that the TDE begins to brighten days before
its discovery. Our dataset also includes 18 epochs of Swift UVOT and XRT
observations, 2 epochs of XMM-Newton observations, 13 spectroscopic
observations, and ground data from the Las Cumbres Observatory telescope
network, spanning from 32 days before peak through 37 days after peak.
ASASSN-19bt thus has the most detailed pre-peak dataset for any TDE. The TESS
light curve indicates that the transient began to brighten on 2019 January 21.6
and that for the first 15 days its rise was consistent with a flux power-law model. The optical/UV emission is well-fit by a blackbody SED,
and ASASSN-19bt exhibits an early spike in its luminosity and temperature
roughly 32 rest-frame days before peak and spanning up to 14 days that has not
been seen in other TDEs, possibly because UV observations were not triggered
early enough to detect it. It peaked on 2019 March 04.9 at a luminosity of
ergs s and radiated
ergs during the 41-day rise to peak. X-ray observations after peak indicate a
softening of the hard X-ray emission prior to peak, reminiscent of the
hard/soft states in X-ray binaries.Comment: 23 pages, 14 figures, 5 tables. A machine-readable table containing
the host-subtracted photometry presented in this manuscript is included as an
ancillary fil
Gene network effects on brain microstructure and intellectual performance identified in 472 twins
A major challenge in neuroscience is finding which genes affect brain integrity, connectivity, and intellectual function. Discovering influential genes holds vast promise for neuroscience, but typical genome-wide searches assess approximately one million genetic variants one-by-one, leading to intractable false positive rates, even with vast samples of subjects. Even more intractable is the question of which genes interact and how they work together to affect brain connectivity. Here, we report a novel approach that discovers which genes contribute to brain wiring and fiber integrity at all pairs of points in a brain scan. We studied genetic correlations between thousands of points in human brain images from 472 twins and their nontwin siblings (mean age: 23.7 ± 2.1 SD years; 193 male/279 female). We combined clustering with genome-wide scanning to find brain systems with common genetic determination. We then filtered the image in a new way to boost power to find causal genes. Using network analysis, we found a network of genes that affect brain wiring in healthy young adults. Our new strategy makes it computationally more tractable to discover genes that affect brain integrity. The gene network showed small-world and scale-free topologies, suggesting efficiency in genetic interactions and resilience to network disruption. Genetic variants at hubs of the network influence intellectual performance by modulating associations between performance intelligence quotient and the integrity of major white matter tracts, such as the callosal genu and splenium, cingulum, optic radiations, and the superior longitudinal fasciculus
Chandra, HST/STIS, NICER, Swift, and TESS Detail the Flare Evolution of the Repeating Nuclear Transient ASASSN-14ko
ASASSN-14ko is a nuclear transient at the center of the AGN ESO 253-G003 that
undergoes periodic flares. Optical flares were first observed in 2014 by the
All-Sky Automated Survey for Supernovae (ASAS-SN) and their peak times are
well-modeled with a period of days and period derivative
of . Here we present ASAS-SN, Chandra, HST/STIS, NICER,
Swift, and TESS data for the flares that occurred in December 2020, April 2021,
July 2021, and November 2021. The HST/STIS UV spectra evolve from blue shifted
broad absorption features to red shifted broad emission features over 10
days. The Swift UV/optical light curves peaked as predicted by the timing
model, but the peak UV luminosities varied between flares and the UV flux in
July 2021 was roughly half the brightness of all other peaks. The X-ray
luminosities consistently decreased and the spectra became harder during the
UV/optical rise but apparently without changes in absorption. Finally, two
high-cadence TESS light curves from December 2020 and November 2018 showed that
the slopes during the rising and declining phases changed over time, which
indicates some stochasticity in the flare's driving mechanism. ASASSN-14ko
remains observationally consistent with a repeating partial tidal disruption
event, but, these rich multi-wavelength data are in need of a detailed
theoretical model.Comment: 25 pages, 14 figures, 4 tables; Submitted to ApJ, comments welcom
- …