11 research outputs found

    Genetic Causes of Clopidogrel Nonresponsiveness: Which Ones Really Count?

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/91111/1/phco.30.3.265.pd

    Genetic Testing for Early Detection of Individuals at Risk of Coronary Heart Disease and Monitoring Response to Therapy: Challenges and Promises

    Get PDF
    Coronary heart disease (CHD) often presents suddenly with little warning. Traditional risk factors are inadequate to identify the asymptomatic high-risk individuals. Early identification of patients with subclinical coronary artery disease using noninvasive imaging modalities would allow the early adoption of aggressive preventative interventions. Currently, it is impractical to screen the entire population with noninvasive coronary imaging tools. The use of relatively simple and inexpensive genetic markers of increased CHD risk can identify a population subgroup in which benefit of atherosclerotic imaging modalities would be increased despite nominal cost and radiation exposure. Additionally, genetic markers are fixed and need only be measured once in a patient’s lifetime, can help guide therapy selection, and may be of utility in family counseling

    Regulatory polymorphism in vitamin K epoxide reductase complex subunit 1 (VKORC1) affects gene expression and warfarin dose requirement

    No full text
    Warfarin dose requirements have been associated with 2 main haplotypes in VKORC1, but the responsible polymorphisms remain unknown. To search for regulatory polymorphisms, we measured allelic mRNA expression of VKORC1 in human liver, heart, and B lymphocytes. The observed 2-fold allelic mRNA expression imbalance narrowed possible candidate SNPs to −1639G>A and 1173C<T. This genotype effect was observed selectively in the liver but not in heart or lymphocytes. In vitro expression of VKORC1 gene constructs, including coding and promoter regions, failed to reveal any genotype effect on transcription and mRNA processing. Chromatin immunoprecipitation with antibodies against acetyl-histone3 and K4-trimethyl-histone3 revealed preferential association of the promoter −1639 G allele with active chromatin, consistent with enhanced mRNA expression. The minor −1639 A allele generates a suppressor E-box binding site, apparently regulating gene expression by a mechanism undetectable with reporter gene assays. A clinical association study demonstrated that promoter SNP −1639G>A, and the tightly linked intron1 SNP 1173C>T, predict warfarin dose more accurately than intron 2 SNP 1542G>C in blacks. Increased warfarin dose requirement in blacks was accounted for by lower frequency of the −1639 A allele. Therefore, −1639G>A is a suitable biomarker for warfarin dosing across ethnic populations
    corecore