873 research outputs found

    Age related differences in anxiety-like behavior and amygdalar CCL2 responsiveness to stress following alcohol withdrawal

    Get PDF
    Behavioral and neuroimmune vulnerability to withdrawal from chronic alcohol varies with age. The relation of anxiety-like behavior to amygdalar CCL2 responses following stress after withdrawal from chronic intermittent alcohol (CIA) was investigated in adolescent and adult rats

    Prenatal stress unmasks behavioral phenotypes in genetic mouse models of neurodevelopmental disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) are complex conditions characterized by heterogeneous clinical profiles and symptoms that arise in infancy and childhood. NDDs are often attributed to a complicated interaction between genetic risk and environmental factors, suggesting a need for preclinical models reflecting the combined impact of heritable susceptibility and environmental effects. A notable advantage of “two-hit” models is the power to reveal underlying vulnerability that may not be detected in studies employing only genetic or environmental alterations. In this review, we summarize existing literature that investigates detrimental interactions between prenatal stress (PNS) and genes associated with NDDs, with a focus on behavioral phenotyping approaches in mouse models. A challenge in determining the overall role of PNS exposure in genetic models is the diversity of approaches for inducing stress, variability in developmental timepoints for exposure, and differences in phenotyping regimens across laboratories. Identification of optimal stress protocols and critical windows for developmental effects would greatly improve the use of PNS in gene × environment mouse models of NDDs

    Withdrawal from Chronic Alcohol Induces a Unique CCL2 mRNA Increase in Adolescent But Not Adult Brain-Relationship to Blood Alcohol Levels and Seizures

    Get PDF
    The role of neuroimmune activation in withdrawal from chronic alcohol (ethanol) has been established in both adolescent and adult models, but direct comparisons across age are sparse. Studies need to elucidate age-dependent neuroimmune effects of alcohol and to focus research attention on age-dependent mechanisms and outcomes

    Prenatal stress unmasks behavioral phenotypes in genetic mouse models of neurodevelopmental disorders

    Get PDF
    Neurodevelopmental disorders (NDDs) are complex conditions characterized by heterogeneous clinical profiles and symptoms that arise in infancy and childhood. NDDs are often attributed to a complicated interaction between genetic risk and environmental factors, suggesting a need for preclinical models reflecting the combined impact of heritable susceptibility and environmental effects. A notable advantage of “two-hit” models is the power to reveal underlying vulnerability that may not be detected in studies employing only genetic or environmental alterations. In this review, we summarize existing literature that investigates detrimental interactions between prenatal stress (PNS) and genes associated with NDDs, with a focus on behavioral phenotyping approaches in mouse models. A challenge in determining the overall role of PNS exposure in genetic models is the diversity of approaches for inducing stress, variability in developmental timepoints for exposure, and differences in phenotyping regimens across laboratories. Identification of optimal stress protocols and critical windows for developmental effects would greatly improve the use of PNS in gene × environment mouse models of NDDs

    Book Reviews

    Get PDF

    Evaluating Fatty Acid Amide Hydrolase as a Suitable Target for Sleep Promotion in a Transgenic TauP301S Mouse Model of Neurodegeneration

    Get PDF
    Sleep disruption is an expected component of aging and neurodegenerative conditions, including Alzheimer’s disease (AD). Sleep disruption has been demonstrated as a driver of AD pathology and cognitive decline. Therefore, treatments designed to maintain sleep may be effective in slowing or halting AD progression. However, commonly used sleep aid medications are associated with an increased risk of AD, highlighting the need for sleep aids with novel mechanisms of action. The endocannabinoid system holds promise as a potentially effective and novel sleep-enhancing target. By using pharmacology and genetic knockout strategies, we evaluated fatty acid amide hydrolase (FAAH) as a therapeutic target to improve sleep and halt disease progression in a transgenic Tau P301S (PS19) model of Tauopathy and AD. We have recently shown that PS19 mice exhibit sleep disruption in the form of dark phase hyperarousal as an early symptom that precedes robust Tau pathology and cognitive decline. Acute FAAH inhibition with PF3845 resulted in immediate improvements in sleep behaviors in male and female PS19 mice, supporting FAAH as a potentially suitable sleep-promoting target. Moreover, sustained drug dosing for 5–10 days resulted in maintained improvements in sleep. To evaluate the effect of chronic FAAH inhibition as a possible therapeutic strategy, we generated FAAH−/− PS19 mice models. Counter to our expectations, FAAH knockout did not protect PS19 mice from progressive sleep loss, neuroinflammation, or cognitive decline. Our results provide support for FAAH as a novel target for sleep-promoting therapies but further indicate that the complete loss of FAAH activity may be detrimental

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types
    • 

    corecore