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Abstract

Rationale—Behavioral and neuroimmune vulnerability to withdrawal from chronic alcohol 

varies with age. The relation of anxiety-like behavior to amygdalar CCL2 responses following 

stress after withdrawal from chronic intermittent alcohol (CIA) was investigated in adolescent and 

adult rats.

Methods—Adolescent and adult Wistar rats were exposed to CIA (three 5-day blocks of dietary 

alcohol separated by 2 days of withdrawal) at concentrations that created similar blood alcohol 

levels across age. Twenty-four hours into the final withdrawal, half of the rats were exposed to 1 h 

of restraint stress. Four hours post-stress, rats were used for behavior or tissue assays.

Results—Anxiety-like behavior was increased versus controls by CIA in adolescents and by CIA 

+ stress in adults. CCL2 mRNA was increased versus controls by CIA in adolescents and by CIA 

and CIA + stress in adults. CCL2 co-localization with neuronal marker NeuN was decreased 

versus controls by CIA in adolescents and by CIA + stress in adults. CCL2 co-localization with 

astrocytic marker GFAP was decreased versus controls by CIA and CIA + stress in adolescents, 

but experimental groups did not differ from controls in adults. CCL2 co-localization with 

microglial marker Iba1 was decreased versus controls by stress alone in adolescents and by CIA + 

stress in adults.

Conclusions—Changes in CCL2 protein might control behavior at either age but are 

particularly associated with CIA alone in adolescents and with CIA + stress in adults. That the 
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number of CeA neurons expressing CCL2 was altered after CIA and stress is consistent with 

CCL2 involvement in neural function.
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Introduction

Adolescents exposed to chronic intermittent alcohol (CIA) demonstrate greater persistence 

of anxiety-like behavior than adults during withdrawal from CIA exposure (Wills et al. 2008, 

2009). The CIA protocol consists of three blocks of 5 days of ethanol diet separated by 2 

days of withdrawal. Consistent with research implicating stress in the anxiety arising after 

CIA (Breese et al. 2005; Overstreet et al. 2004), substitution of stress for the initial two 

alcohol withdrawals from the CIA exposure in adults and adolescents enhanced anxiety-like 

behavior during the final alcohol withdrawal (Wills et al. 2010). In agreement with research 

demonstrating that cytokines are increased in brain by stress (Madrigal et al. 2010; 

Vecchiarelli et al. 2016), substitution of the two initial withdrawals of the CIA protocol with 

intracerebroventricular (ICV) (1 week apart) of the chemokine (C-C motif) ligand (CCL2) 

before the final 5 days of the alcohol diet enhanced anxiety-like behavior during withdrawal 

from the single final 5-day alcohol exposure versus 5 days of ethanol diet (Breese et al. 

2008; Knapp et al. 2011). In accord with this finding, elevation of CCL2 alone altered 

hippocampal synaptic function (Nelson et al. 2011) and elevation of CCL2 in combination 

with alcohol altered hippocampal synaptic structure (Gruol et al. 2014). CCL2 and CCR2 

knockout mice were shown to have altered alcohol drinking behavior (Blednov et al. 2005), 

a finding that further supports the idea that CCL2 influences neural function underlying 

behavior. Relatedly, ICV injections of CCL2 also increased drinking behavior (Valenta and 

Gonzales 2016). If CCL2 plays a role in age-related differences in alcohol-related behaviors 

such as anxiety, then it might be expected that differences in CCL2 induction accompany 

these behavioral differences. In fact, 10 days of daily gavage in adult, but not adolescent, 

mice increased CCL2 messenger RNA (mRNA) in hippocampus, cortex, and cerebellum 

(Kane et al. 2014). In another study, both adolescent and adult rats exhibited increases in 

cortical CCL2 mRNA after 15 continuous days of liquid ethanol diet (Harper et al. 2015). 

However, age-related studies have not been reported for the amygdala, a region shown to 

have a strong cytokine reponse to alcohol (Freeman et al. 2012; He and Crews 2008).

The central amygdala (CeA) supports the withdrawal-induced anxiety-like behavior that 

follows CIA exposure (Huang et al. 2010). Additionally, knock down of CCL2 with siRNA 

in either the CeA or the ventral tegmental area blocked drinking behavior (June et al. 2015). 

Less is known about CCL2 protein in this context, but this chemokine has been found to co-

localize with neurons, astrocytes, and microglia in healthy adult, alcohol naive, Wistar, and 

alcohol-preferring rats (Banisadr et al. 2005a; June et al. 2015). Both astrocytes and 

microglia undergo phenotypic changes with age including morphological changes and 

changes in expression of neuroimmune molecules (Bushong et al. 2004; Crain et al. 2013; 

Robillard et al. 2016; Schwarz et al. 2012; Yang et al. 2013). Therefore, it would be 
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important to determine the potential changes across age in cell-type distribution of CCL2 

protein in response to alcohol and other challenges such as stress.

Despite the demonstrated roles of stress, the amygdala, and CCL2 in the adaptive changes 

following CIA withdrawal (e.g., Breese et al. 2008; Knapp et al. 2011), the influence of CIA 

exposure alone or of stress after CIA in adolescents and adults on withdrawal induced 

anxiety-like behavior or the induction of CCL2 in the amygdala has not been studied. Thus, 

in the present investigation, the first experiment sought to confirm that adolescents and 

adults differ in anxiety-like behavior in response to stress alone, CIA or stress after CIA, 

even with comparable blood alcohol levels during treatment. Following this experiment, the 

effects of stress, CIA, and stress after CIA on CCL2 mRNA as a function of age were 

assessed in the amygdala. The level of co-localization of CCL2 protein with markers of 

various cellular subtypes in the CeA in adolescents and adults was determined after stress 

alone, CIA, and stress after CIA. The results were expected to extend our understanding of 

the interaction of alcohol withdrawal, stress, and CCL2 in behavior and in the relevant 

adaptations accompanying these challenges.

Materials and methods

Animals

The Institutional Animal Use and Care Committee at UNC Chapel Hill approved all 

protocols. Male Wistar rats (Charles Rivers, Raleigh, NC) arrived at 21 days of age for 

adolescents or between 45 and 48 days (180–200 g) for adults. A 12-h light-dark cycle was 

used, and water was always available ab libitum. One to 3 days after arrival, rats were 

individually housed and chow was removed for the remainder of the study. A nutritionally 

complete liquid control diet (CD) was made available on the first day, but on the following 

day, half the rats were switched to an isocalorically equivalent ethanol diet (ED). Both diets 

were designed by UNC researchers to meet the National Research Council (1972) nutrient 

requirements and have been used by this lab for several decades to establish the effects of 

alcohol withdrawal on anxiety-like behavior (Frye et al. 1983). A pair-feeding paradigm was 

used to determine the amount of CD given based on the amount of diet consumed the 

previous day by the rats on ED (Harper et al. 2015). Adolescent and adult rats were exposed 

to 5.4 and 7 % w/v ethanol concentrations, respectively, because these concentrations were 

previously shown to create equivalent blood alcohol levels in both age groups using a 

continuous alcohol dietary paradigm, and 7 % ethanol has been shown to lead to withdrawal 

induced seizures in adolescents (Harper et al. 2015). In this case, blood alcohol levels were 

not significantly different across age on the last day of each 5-day cycle; however, total 

alcohol consumption was higher in the adolescents (Table 1). CD was used for all rats during 

withdrawal. Both adult and adolescent rats continue to gain weight throughout the protocol 

(data not shown). Twenty-four hours after the conclusion of the third 5-day cycle, half the 

rats were exposed to 1-h restraint stress in plastic rat decapicones (DC-200, Braintree 

Scientific Inc., Braintree, MA) (Knapp et al. 2007). Four hours after the completion of 

stress, rats were used for either behavioral analysis or tissue collection (Fig. 1). Four hours 

post-restraint stress was chosen as it has been shown to have significant effects on the 

neuroimmune system (Knapp et al. 2016; Vecchiarelli et al. 2016).
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Blood alcohol levels

At 6 am, 2 h before withdrawal at the end of each 5-day cycle, tail blood was collected. ED 

was available before and after the blood collection period until withdrawal, then CD was 

available, but no chow was available. This time point has previously been shown to be at 

peak alcohol consumption for both adolescent and adult rats (Harper et al. 2015). Blood data 

were taken from a random sample of rats of each age. Given the size of adolescents, blood 

draw did not always result in sufficient volume of blood to run samples. Blood was analyzed 

using gas chromatography as previously described (Harper et al. 2015; Knapp and Breese 

2012).

Behavioral analysis

The social interaction test was used as a measure of anxiety-like behavior, as per previous 

reports (File and Seth 2003; Knapp et al. 2011; Overstreet et al. 2002). Rats were paired by 

age and approximately similar weight, and the data from individual rats were used as prior 

reports demonstrated that the behavior across CD and ED groups is independent within pairs 

(Overstreet et al. 2002). Rats were placed simultaneously in an unfamiliar black Plexiglas 

arena (60 × 60 cm) under 340 lx lighting. Social interaction was recorded for 5 min. An 

experienced observer blind to treatment scored recordings for the time each rat engaged in 

social behavior (conspecific grooming, sniffing, following, crawling over/under its partner). 

A reduction in social interaction was taken to indicate an elevated anxiety-like state.

Tissue collection and qPCR

Rats were sacrificed by rapid decapitation, the brain chilled to 4 °C in phosphate-buffered 

saline (PBS), and the amygdala immediately dissected on an ice-chilled surface. The 

amygdala was gross dissected as a block of tissue with the following landmarks as guides. 

Following a coronal cut of the brain at the anterior end of the hypothalamus, cuts were made 

sagitally though the lateral edges of the left and right sides of the hypothalamus with a final 

cut extending laterally from the posterior ends of the sagittal cuts to the rhinal fissure so as 

to collect tissue ventral to the rhinal fissure. The amygdala was frozen on dry ice then stored 

at −80 °C until use. Tissue was sonicated in TE buffer containing 1 % SDS. TRIzol reagent 

(Life Technologies, Grand Island, NY) was then used to extract the RNA followed by use of 

the SV total RNA isolation system (Promega, Madison, WI). To convert RNA to cDNA, the 

Superscript III First Strand Synthesis Super mix (Life Technologies, Grand Island, NY) was 

used. The CCL2 (Rn00580555_m1) Taqman assay with the β-actin (Rn00667869_m1) assay 

were used to assay mRNA levels. Samples were run in duplicate on the StepOnePlus real-

time PCR machine (Life Technologies, Grand Island, NY). Cycle times were used to 

calculate fold change using the formula 2–ΔΔCt.

Tissue collection and immunohistochemistry

Rats were given intraperitoneal injections of pentobarbital 100 mg/kg. Using cardiac 

perfusion, 0.1 M cold PBS was perfused through the brain followed by 4 % 

paraformaldehyde in 0.1 M PB. Tissue was sliced coronally at 40 μm using a VT 1000S 

vibratome (Leica Biosystems, Buffalo Grove, IL). All tissue was blocked in 10 % normal 

serum (choice of serum was dependent on secondary antibodies) and stained for CCL2 
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1:200 (Santa Cruz Biotechnology, Inc., Dallas, TX) with a rabbit anti-goat Alexa Fluor 594 

secondary 1:1000 (Thermo Fisher Scientific, Waltham, MA). The specificity of this antibody 

for CCL2 was confirmed previously (Banisadr et al. 2005a). CCL2 staining was combined 

serially with one of three cell-type-specific markers. Tissue was placed in all primary 

antibodies overnight at 4 °C on a rocker, and tissue was placed in all secondary antibodies 

for 45 min at 4 °C on a rocker. For neurons, the neuronal nuclei marker, NeuN 1:500 (EMD 

Millipore, Billerica, MA) was used followed by secondary goat anti-mouse Alexa Fluor 488 

1:500 (Thermo Fisher Scientific). For astrocytes, GFAP 1:2 K (Dako, Carpinteria, CA) 

followed by secondary chicken anti-rabbit Alexa Fluor 488 1:500 (Thermo Fisher 

Scientific). For microglia, Iba1 1:1 K (Wako, Richmond, VA) followed by secondary 

chicken anti-rabbit Alexa Fluor 488 1:500 (Thermo Fisher Scientific). All images were 

captured with a LSM 780 Confocal Microscope (Carl Zeiss AG, Oberkochen, Germany) and 

then analyzed using ImageJ. Two biological replicates were run. To control for differences in 

staining, a corrected table was used to equalize the means within each age/experimental 

group. Images used in the figures were brightened by 25 % and cropped, but only unaltered 

images were used for analysis. Particle analysis on Fiji ImageJ software (NIH, Bethesda, 

MD) was used to unbiasedly count the number of cells in the cell-type-specific marker 

images (NeuN, GFAP, or Iba1 images). CCL2 images were then added to these images using 

the add function in Fiji image calculator. This function of image calculator creates a final 

combined image containing only cells that appeared in both the CCL2 image and the cell-

type-specific marker image. Lastly, the final combined images underwent particle analysis to 

determine the number of cells that contain the cell-type-specific marker and CCL2. The 

percentage co-localization was determined using the number of cells determined by particle 

analysis in the combined image over the number of cells determined by particle analysis 

from the cell-type-specific marker images.

Statistical analysis

All graphs were made in GraphPad Prism (GraphPad Software Inc., La Jolla, CA), and data 

were analyzed in Statview (SAS, Cary, NC). Data were analyzed by three-way (age, diet, 

and stress) ANOVA or in the case of blood alcohol levels and alcohol consumed two-way 

repeated ANOVA (age and time) was used. Following a significant ANOVA, Fisher's least 

significant difference (LSD) was used for post hoc comparisons or an exploratory Student's t 
test was done. All data are displayed as mean ± SEM. P values <0.05 were considered 

significantly different.

Results

Stress after CIA withdrawal in adolescents and adults induces opposing effects on 
anxiety-like behavior

A significant main effect of age (F(1,72) = 42.03, p < 0.01), diet (F(1,72) = 12.52, p < 0.01) 

and an interaction between the two factors (age × diet F(1,72) = 6.3, p < 0.05) on anxiety-

like behavior was observed (Fig. 2). Among adolescents, the CIA withdrawal group (ED-no 

stress) had higher anxiety-like behavior than controls (CD-no stress) (p < 0.05) (Fig. 2a). No 

other significant differences were observed among adolescents. Among adults, only stress 
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following CIA withdrawal (ED-stress) showed a significant increase in anxiety-like behavior 

compared with controls (p < 0.05) (Fig. 2b).

The pattern of CCL2 mRNA changes in amygdala after withdrawal from CIA exposure and 
after stress following withdrawal from CIA in adults and adolescents mimics the age-
specific pattern of changes in anxiety-like behavior

A significant main effect of age (F(1,44) = 5.2, p < 0.05), diet (F(1,44) = 23.42, p < 0.01) 

and an interaction between age and stress (F(1,44) = 5.03, p < 0.05) on CCL2 mRNA levels 

was observed (Fig. 3). Among adolescents, only the CIA withdrawal group had elevated 

CCL2 mRNA relative to control (p < 0.05) (Fig. 3a). However, stress following CIA 

withdrawal in adolescents significantly decreased the elevated levels in the CIA withdrawal 

group (p < 0.05) (Fig. 3a). Among adults, both the CIA withdrawal group (p < 0.05) and the 

stress following CIA withdrawal group (p < 0.01) had elevated CCL2 mRNA levels above 

control (Fig. 3b). No other comparisons within the adult age group were significant.

Withdrawal from CIA decreased CCL2 co-localization with NeuN in central nucleus of the 
amygdala (CeA) neurons in adolescents, but only stress following CIA decreased this co-
localization in adults

In controls of both adolescents and adults (CD-no stress, Fig. 4), CCL2 protein was found in 

the cell bodies of CeA neurons as confirmed by the co-localization of CCL2 and NeuN (a 

neuronal nuclei marker) in the same cells. An interaction between age and stress (F(1,64) = 

4.94, p < 0.05) was observed, as was an interaction between all three factors (age × diet × 

stress F(1,64) = 6.93, p < 0.05) on CCL2 co-localization with NeuN (Fig. 4). Among 

adolescents, the CIA withdrawal subgroup had a decreased percentage of NeuN-positive 

neurons co-localizing with CCL2 relative to control (p < 0.05) (Fig. 4a–g). No other 

significant differences from controls were observed among the adolescent groups. Among 

adults, stress following CIA withdrawal significantly decreased CCL2 co-localization with 

NeuN (p < 0.05) (Fig. 4h–n). The adult group that received stress following CIA withdrawal 

also had significantly reduced CCL2 co-localization with NeuN compared with rats that 

received only CIA withdrawal (p < 0.05) (Fig. 4h–n).

Withdrawal from CIA and stress following CIA alters CCL2 co-localization with GFAP in 
CeA astrocytes of adolescents only

In controls of both adolescents and adults (CD-no stress, Fig. 5), CCL2 was found in 

astrocytes of the CeA as shown by the co-localization of CCL2 and GFAP in the same cells. 

A significant main effect of age (F(1,69) = 116.03, p < 0.01) and an interaction between age 

and diet (F(1,69) = 4.14, p < 0.05) on CCL2 co-localization with GFAP was observed. 

Among adolescents, both rats undergoing CIA withdrawal and those that underwent stress 

following CIA withdrawal had significantly decreased CCL2 co-localization with GFAP (p 
< 0.05) (Fig. 5a–g). No significant differences were noted between experimental groups 

within the adult age group (Fig. 5h–n).
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Stress alters CCL2 co-localization with Iba1 in CeA microglia of adolescents and adults

In controls of both adolescents and adults (CD-no stress, Fig. 6), CCL2 in the CeA was co-

localized with microglial Iba1. Significant main effects of age (F(1,65) = 11.72, p < 0.01) 

and stress F(1,65) = 9.71, p < 0.01) on CCL2 co-localization with Iba1 were observed. 

Among adolescents, only rats that underwent stress alone (CD-stress) had significantly 

reduced CCL2 co-localization with Iba1 compared with controls (p < 0.05) (Fig. 6a–g). 

Among adults, stress following CIA withdrawal significantly decreased CCL2 co-

localization with Iba1 (p < 0.05) (Fig. 6h–n). The adults that received stress following CIA 

withdrawal also had significantly reduced CCL2 co-localization with Iba1 compared with 

rats that received only CIA withdrawal (p < 0.05).

Discussion

The present investigation is consistent with previous work showing that induction of 

anxiety-like behavior in adult rats after CIA exposure was absent by 24 h post-alcohol 

withdrawal but persisted for up to a week after withdrawal in adolescents (Wills et al. 2009). 

This age-specific behavioral response to CIA might be attributed to more marked alterations 

in the brain of the adolescents than in adults. The CIA withdrawal followed by stress 

increased anxiety-like behavior in adults, with the stress/withdrawal combination having the 

unexpected outcome of returning behavior to control levels in the adolescents. Overall, these 

behavioral effects were moderate in magnitude, and additional studies to replicate these 

findings and to identify optimal conditions are warranted.

Results of this study also confirm previous data showing that CCL2 is expressed in neurons, 

astrocytes, and microglia in brain (Banisadr et al. 2005a; June et al. 2015). The present 

report is the first to show the occurrence of CCL2 cell-type-specific responses based on age 

and experimental exposure. While astrocytes exhibited a decrease in CCL2 co-localization 

with GFAP in response to CIA with or without stress in adolescents, no such change in 

adults was observed to the CIA withdrawal with or without stress. Whether this difference in 

CCL2 responsiveness is wholly attributed to age is unknown. As this outcome does not 

correlate with the behavioral changes, astrocytes may not be the source of CCL2 that affects 

behavior in the adult. Microglia appear to be the only cell type that is responsive to stress—

an outcome once again that is inconsistent with the behavioral pattern observed. CCL2 co-

localization with NeuN in CeA neurons decreased with CIA in adolescents and to CIA 

withdrawal followed by stress in adults. This latter pattern is consistent with that seen with 

behavior changes in these age groups.

Altogether, these data from various cell types suggest that neurons are a probable source of 

the CCL2 that regulates anxiety-like behavior deficits induced by withdrawal from chronic 

alcohol. However, neurons might not be the sole source of CCL2. CCL2 release from 

multiple sources might be necessary for extracellular CCL2 to reach levels sufficient to 

induce behavioral effects. For example, in the adolescent, CIA withdrawal decreases CCL2 

co-localization with both astrocytic GFAP and neuronal NeuN while in the adult, stress 

following CIA decreases CCL2 co-localization with both microglia Iba1 and neuronal 

NeuN. It is notable that there is no relationship between behavior and the reduced co-

localization of CCL2 with GFAP in adolescent rats exposed to stress following CIA 
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withdrawal. It is also notable that there is no relationship between behavior and the reduced 

co-localization of CCL2 with Iba1 in microglia of adolescent rats exposed to stress. Thus, it 

is likely that CCL2 release from only astrocytes or microglia is insufficient to impact 

behavior in this model. Altogether, this data suggests that it also likely that blocking 

neuronal CCL2 selectively should be sufficient to reduce the behavior even if CCL2 from 

other sources contribute to extracellular CCL2 levels. This interpretation is consistent with 

the finding that neuronal CCL2 was specifically involved with drinking behavior (June et al. 

2015). Overall, the approach of blocking CeA neural activity seems useful in further 

evaluating the conditions in which induction of CCL2 contributes to the anxiety-like 

behavioral associated with CIA withdrawal and stress after CIA withdrawal.

Collectively, the experiments suggest that CIA withdrawal decreases the number of CeA 

neurons containing CCL2 protein, a phenomenon that could influence the expression of 

anxiety-like behavior during withdrawal. Potentially, this latter alteration could lead to the 

subsequent increase in CCL2 mRNA activity that could replace CCL2 protein in CeA 

neurons. However, it was interesting that CIA withdrawal alone was sufficient to elicit these 

effects in the adolescent whereas the combination of CIA withdrawal followed by stress was 

required to cause the same effects in adults. Thus, the CIA withdrawal appears to prime the 

adult amygdala such that subsequent stressors create a greater neuroimmune response. 

Surprisingly, the stress after CIA caused CCL2 levels to return to control levels in the 

adolescent rats. Potentially, the prolonged response to adolescent CIA withdrawal fosters an 

adaptation that desensitizes the amygdala to a subsequent stress.

The cause of the decrease in the number of neurons containing CCL2 protein after the 

alcohol and stress challenges in adults and adolescents is unknown but could be explained 

by CCL2 degradation within these neurons; shuttling of CCL2 from the cell bodies to the 

terminals for vesicular release at that site; and/or CCL2 release from the cell bodies in the 

CeA itself. Previous work from the spinal cord has shown vesicular release of CCL2 from 

nerve terminals (Dansereau et al. 2008; Van Steenwinckel et al. 2011)—a finding consistent 

with the idea that chemokines like CCL2 can act as neurotransmitters. CCL2 receptors 

(CCR2) are located on neurons in many brain regions including the amygdala (Banisadr et 

al. 2005b). Such receptor localization on CeA neurons would allow for CCL2 release to 

regulate behavior, a possibility that should be evaluated in future research.
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Fig. 1. 
Diagram of the chronic intermittent alcohol/stress paradigm used
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Fig. 2. 
Adolescent and adult rats show different anxiety-like responses to CIA withdrawal 

combined with stress. a Adolescent rats had increased anxiety-like behavior (reduced social 

interaction) following CIA withdrawal which was reversed by combining CIA withdrawal 

with stress (CD-no stress vs ED-no stress p < 0.05). b In adult rats combining CIA 

withdrawal with stress resulted in greater anxiety-like behavior (CD-no stress vs ED-stress p 
< 0.05). CD-no stress = control rats that received control liquid diet and no stress (white 
bar), CD-stress = rats that received control liquid diet and 1 -h restraint stress (light gray 
bar), ED-no stress = rats that received ethanol liquid diet (dark gray bar), ED-stress = rats 

that received ethanol liquid diet and at 24 h into withdrawal had 1-h restraint stress (black 
bar). Data presented as mean ± SEM. N = 9–12 per group. Post hoc versus CD-no stress *p 
< 0.05
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Fig. 3. 
Adolescent and adult rats show different amygdalar CCL2 mRNA responses to stress 

following CIA withdrawal. a Adolescent rats had increased CCL2 mRNA following CIA 

withdrawal (CD-no stress vs ED-no stress p < 0.05) that was reversed by combining CIA 

withdrawal with stress (ED-no stress vs ED-stress p < 0.05). b In adult rats stress following 

CIA withdrawal resulted in the greatest CCL2 mRNA response (CD-no stress vs ED-stress p 
< 0.01). CD-no stress = control rats that received control liquid diet and no stress (white 
bar), CD-stress = rats that received control liquid diet and 1-h restraint stress (light gray bar), 
ED-no stress = rats that received ethanol liquid diet (dark gray bar), ED-stress = rats that 

received ethanol liquid diet and at 24 h into withdrawal had 1-h restraint stress (black bar). 
Data presented as mean ± SEM. N = 6–7 per group. Post hoc versus CD-no stress *p < 0.05, 

**p < 0.01, post hoc ED-no stress versus ED-stress +p < 0.05
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Fig. 4. 
Adolescent rats show greater reduction in CCL2 co-localization with NeuN in neurons of the 

CeA following CIA withdrawal than adult rats. CCL2 is in red and NeuN (used as a neuron 

marker) is in green. Representative images of the CeA of adolescent rats exposed only to 

control diet (a–c) or 29 h into withdrawal from CIA (d–f). Cell counts demonstrated that in 

the CeA withdrawal significantly decreased CCL2 protein co-localization with NeuN in 

neurons in adolescent rats (CD-no stress versus ED-no stress p < 0.05) (g). Representative 

images of the CeA of adult rats exposed only to control diet (h–j) or rats that were stressed 

24 h into withdrawal from CIA (k–m). In the CeA withdrawal combined with stress 

significantly decreased CCL2 protein co-localization with NeuN in adult rats (CD-no stress 

versus ED-stress p < 0.05) (n). White arrows indicate co-localization. CD-no stress = control 

rats that received control liquid diet and no stress (white bar), CD-stress = rats that received 

control liquid diet and 1-h restraint stress (light gray bar), ED-no stress = rats that received 

ethanol liquid diet (dark gray bar), ED-stress = rats that received ethanol liquid diet and at 

24 h into withdrawal had 1-h restraint stress (black bar). Data presented as mean ± SEM. N 
= 8–10 per group. Post hoc versus CD-no stress *p < 0.05, **p < 0.01, post hoc ED-no 

stress versus ED-stress ++p < 0.01 (color figure online)

Harper et al. Page 14

Psychopharmacology (Berl). Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
Only adolescent rats show a change in CCL2 co-localization with GFAP in astrocytes 

following withdrawal from CIA or withdrawal combined with stress. CCL2 is in red and 

GFAP (used as an astrocyte marker) is in green. Representative images of the CeA of 

adolescent rats exposed only to control diet (a–c) or 29 h into withdrawal from chronic 

intermittent alcohol (d–f). Cell counts demonstrated that in the CeA withdrawal (CD-no 

stress versus ED-no stress p < 0.05) and withdrawal combined with stress (CD-no stress 

versus ED-stress p < 0.05) significantly decreased CCL2 protein co-localization with GFAP 

in adolescent rats (g). Representative images of the CeA of adult rats exposed only to control 

diet (h–j) or rats that were stressed 24 h into withdrawal from CIA (k–m). In the CeA, none 

of these experimental conditions altered CCL2 protein co-localization with GFAP in adult 

rats (n). White arrows indicate co-localization. CD-no stress = control rats that received 

control liquid diet and no stress (white bar), CD-stress = rats that received control liquid diet 

and 1-h restraint stress (light gray bar), ED-no stress = rats that received ethanol liquid diet 

(dark gray bar), ED-stress = rats that received ethanol liquid diet and at 24 h into withdrawal 

had 1 -h restraint stress (black bar). Data presented as mean ± SEM. N = 9–10 per group. 

Post hoc versus CD-no stress *p < 0.05 (color figure online)
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Fig. 6. 
Stress alters CCL2 co-localization with Iba1 in microglia. CCL2 is in red and Iba1 (used as a 

microglia marker) is in green. Representative images of the CeA of adolescent rats exposed 

only to control diet (a–c) or 4 h after stress (d–f). Cell counts demonstrated that in the CeA 

stress alone, decreased CCL2 protein co-localization with Iba1 in adolescent rats (CD-no 

stress vs CD-stress p < 0.05) (g). Representative images of the CeA of adult rats exposed 

only to control diet (h–j) or rats that were stressed 24 h into withdrawal from CIA (k–m). In 

the CeA of adult rats, there was a decrease in CCL2 protein co-localization with Iba1 in rats 

that received stress following CIA withdrawal (CD-no stress vs ED-stress p < 0.05) (n). 

White arrows indicate co-localization. CD-no stress = control rats that received control 

liquid diet and no stress (white bar), CD-stress = rats that received control liquid diet and 1-h 

restraint stress (light gray bar), ED-no stress = rats that received ethanol liquid diet (dark 
gray bar), ED-stress = rats that received ethanol liquid diet and at 24 h into withdrawal had 1 

-h restraint stress (black bar). Data presented as mean ± SEM. N = 9–10 per group. Post hoc 

versus CD-no stress *p < 0.05. t Test versus CD-no stress #p < 0.05
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Table 1

Blood alcohol levels and alcohol consumption across age

Cycle 1 Cycle 2 Cycle 3

Blood 
alcohol 
level (mg 
%)

Alcohol consumed (g/kg/day) Blood 
alcohol 
level (mg 
%)

Alcohol consumed (g/kg/day) Blood 
alcohol 
level (mg 
%)

Alcohol consumed (g/kg/day)

Adolescent 
(5.4 % 
w/v)

198.1 ± 41.4
17.8 ± 0.3

** 214.9 ± 36.6
18.2 ± 0.3

** 218 ± 19.2
16.5 ± 0.3

**

Adult (7 % 
w/v)

135.6 ± 13.5 10.2 ± 0.1 195.7 ± 18.0 11.8 ± 0.2 186.9 ± 20.8 12.0 ± 0.2

There was no significant effect of age on blood alcohol level with these alcohol concentrations. Both age and cycle affect the amount of alcohol 
consumed. Adolescent blood N = 5–8, consumption N = 33; adult blood N = 8, consumption N = 35. Data are presented as mean ± SEM. Post hoc 
adolescent versus adult at same cycle

**
p < 0.01
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