79 research outputs found

    Linear growth in preschool children treated with mass azithromycin distributions for trachoma: A cluster-randomized trial.

    Get PDF
    BackgroundMass azithromycin distributions have been shown to reduce mortality among pre-school children in sub-Saharan Africa. It is unclear what mediates this mortality reduction, but one possibility is that antibiotics function as growth promoters for young children.Methods and findings24 rural Ethiopian communities that had received biannual mass azithromycin distributions over the previous four years were enrolled in a parallel-group, cluster-randomized trial. Communities were randomized in a 1:1 ratio to either continuation of biannual oral azithromycin (20mg/kg for children, 1 g for adults) or to no programmatic antibiotics over the 36 months of the study period. All community members 6 months and older were eligible for the intervention. The primary outcome was ocular chlamydia; height and weight were measured as secondary outcomes on children less than 60 months of age at months 12 and 36. Study participants were not masked; anthropometrists were not informed of the treatment allocation. Anthropometric measurements were collected for 282 children aged 0-36 months at the month 12 assessment and 455 children aged 0-59 months at the month 36 assessment, including 207 children who had measurements at both time points. After adjusting for age and sex, children were slightly but not significantly taller in the biannually treated communities (84.0 cm, 95%CI 83.2-84.8, in the azithromycin-treated communities vs. 83.7 cm, 95%CI 82.9-84.5, in the untreated communities; mean difference 0.31 cm, 95%CI -0.85 to 1.47, P = 0.60). No adverse events were reported.ConclusionsPeriodic mass azithromycin distributions for trachoma did not demonstrate a strong impact on childhood growth.Trial registrationThe TANA II trial was registered on clinicaltrials.gov #NCT01202331

    Magnetic resonance fingerprinting review part 2: Technique and directions

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/1/jmri26877.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/154317/2/jmri26877_am.pd

    Large T1 contrast enhancement using superparamagnetic nanoparticles in ultra-low field MRI

    Get PDF
    Superparamagnetic iron oxide nanoparticles (SPIONs) are widely investigated and utilized as magnetic resonance imaging (MRI) contrast and therapy agents due to their large magnetic moments. Local field inhomogeneities caused by these high magnetic moments are used to generate T2 contrast in clinical high-field MRI, resulting in signal loss (darker contrast). Here we present strong T1 contrast enhancement (brighter contrast) from SPIONs (diameters from 11 nm to 22 nm) as observed in the ultra-low field (ULF) MRI at 0.13 mT. We have achieved a high longitudinal relaxivity for 18 nm SPION solutions, r1 = 615 s−1 mM−1, which is two orders of magnitude larger than typical commercial Gd-based T1 contrast agents operating at high fields (1.5 T and 3 T). The significantly enhanced r1 value at ultralow fields is attributed to the coupling of proton spins with SPION magnetic fluctuations (Brownian and NĂ©el) associated with a low frequency peak in the imaginary part of AC susceptibility (χ”). SPION-based T1-weighted ULF MRI has the advantages of enhanced signal, shorter imaging times, and iron-oxidebased nontoxic biocompatible agents. This approach shows promise to become a functional imaging technique, similar to PET, where low spatial resolution is compensated for by important functional information

    Practices and motives behind antibiotics provision in drug outlets in Tanzania : a qualitative study

    Get PDF
    Funding: This study was part of the larger 3-country Holistic Approach to Unravel Antibacterial Resistance in East Africa (HATUA) project funded by the National Institute for Health Research, Medical Research Council and the Department of Health and Social Care, Award (MR/S004785/1).Dispensing antibiotics without prescription is among the major factors leading to antimicrobial resistance. Dispensing of antibiotics without prescription has negative impact at the individual and societal level leading to poor patient outcomes, and increased risks of resistant bacteria facilitated by inappropriate choice of antibiotics doses/courses. Antimicrobial resistance is a global public health threat which is projected to cause 10 million deaths by 2050 if no significant actions are taken to address this problem This study explored the practices and motives behind dispensing of antibiotics without prescription among community drug outlets in Tanzania. Finding of this study provides more strategies to antibiotics stewardship intervention. In-depth interviews with 28 drug dispensers were conducted for three months consecutively between November 2019 and January 2020 in 12 community pharmacies and 16 Accredited Drug Dispensing Outlets (ADDOs) in the Mwanza, Kilimanjaro and Mbeya regions of Tanzania. Transcripts were coded and analyzed thematically using NVivo12 software. Majority of dispensers admitted to providing antibiotics without prescriptions, selling incomplete courses of antibiotics and not giving detailed instructions to customers on how to use the drugs. These practices were motivated by several factors including customers’ pressure/customers’ demands, business orientation-financial gain of drug dispensers, and low purchasing power of patients/customers. It is important to address the motives behind the unauthorized dispensing antibiotics. On top of the existing regulation and enforcement, we recommend the government to empower customers with education and purchasing power of drugs which can enhance the dispensers adherence to the dispensing regulations. Furthermore, we recommend ethnographic research to inform antibiotic stewardship interventions going beyond awareness raising, education and advocacy campaigns. This will address structural drivers of AMR such as poverty and inadequate government health services, and the disconnect between public messaging and/or policy and the public itself.Publisher PDFPeer reviewe

    Developing a medical device-grade T2 phantom optimized for myocardial T2 mapping by cardiovascular magnetic resonance

    Get PDF
    INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≀ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR

    Treatment seeking and antibiotic use for urinary tract infection symptoms in the time of COVID-19 in Tanzania and Uganda

    Get PDF
    Funding: CARE: COVID-19 and Antimicrobial Resistance in East Africa – impact and response is a Global Effort on COVID-19 (GECO) Health Research Award (MR/V036157/1) funded by UK Research and Innovation (Medical Research Council) and the Department of Health and Social Care (National Institute for Health Research).Background There is still little empirical evidence on how the outbreak of coronavirus disease 2019 (COVID-19) and associated regulations may have disrupted care-seeking for non-COVID-19 conditions or affected antibiotic behaviours in low- and middle-income countries (LMICs). We aimed to investigate the differences in treatment-seeking behaviours and antibiotic use for urinary tract infection (UTI)-like symptoms before and during the pandemic at recruitment sites in two East African countries with different COVID-19 control policies: Mbarara, Uganda and Mwanza, Tanzania. Methods In this repeated cross-sectional study, we used data from outpatients (pregnant adolescents aged >14 and adults aged >18) with UTI-like symptoms who visited health facilities in Mwanza, Tanzania and Mbarara, Uganda. We assessed the prevalence of self-reported behaviours (delays in care-seeking, providers visited, antibiotics taken) at three different time points, labelled as ‘pre-COVID-19 phase’ (February 2019 to February 2020), ‘COVID-19 phase 1’ (March 2020 to April 2020), and ‘COVID-19 phase 2’ (July 2021 to February 2022). Results In both study sites, delays in care-seeking were less common during the pandemic than they were in the pre-COVID phase. Patients in Mwanza, Tanzania had shorter care-seeking pathways during the pandemic compared to before it, but this difference was not observed in Mbarara, Uganda. Health centres were the dominant sources of antibiotics in both settings. Over time, reported antibiotic use for UTI-like symptoms became more common in both settings. During the COVID-19 phases, there was a significant increase in self-reported use of antibiotics like metronidazole (<30% in the pre-COVID-19 phase to 40% in COVID phase 2) and doxycycline (30% in the pre-COVID-19 phase to 55% in COVID phase 2) that were not recommended for treating UTI-like symptoms in the National Treatment Guidelines in Mbarara, Uganda. Conclusions There was no clear evidence that patients with UTI-like symptoms attending health care facilities had longer or more complex treatment pathways despite strict government-led interventions related to COVID-19. However, antibiotic use increased over time, including some antibiotics not recommended for treating UTI, which has implications for future antimicrobial resistance.Publisher PDFPeer reviewe

    Treatment seeking behaviours, antibiotic use and relationships to multi-drug resistance : a study of urinary tract infection patients in Kenya, Tanzania and Uganda

    Get PDF
    Antibacterial resistance (ABR) is a major public health threat. An important accelerating factor is treatment-seeking behaviour, including inappropriate antibiotic (AB) use. In many low- and middle-income countries (LMICs) this includes taking ABs with and without prescription sourced from various providers, including health facilities and community drug sellers. However, investigations of complex treatment-seeking, AB use and drug resistance in LMICs are scarce. The Holistic Approach to Unravel Antibacterial Resistance in East Africa (HATUA) Consortium collected questionnaire and microbiological data from adult outpatients with urinary tract infection (UTI)-like symptoms presenting at healthcare facilities in Kenya, Tanzania and Uganda. Using data from 6,388 patients, we analysed patterns of self-reported treatment seeking behaviours (‘patient pathways’) using process mining and single-channel sequence analysis. Among those with microbiologically confirmed UTI (n = 1,946), we used logistic regression to assess the relationship between treatment seeking behaviour, AB use, and the likelihood of having a multi-drug resistant (MDR) UTI. The most common treatment pathway for UTI-like symptoms in this sample involved attending health facilities, rather than other providers like drug sellers. Patients from sites in Tanzania and Uganda, where over 50% of patients had an MDR UTI, were more likely to report treatment failures, and have repeat visits to providers than those from Kenyan sites, where MDR UTI proportions were lower (33%). There was no strong or consistent relationship between individual AB use and likelihood of MDR UTI, after accounting for country context. The results highlight the hurdles East African patients face in accessing effective UTI care. These challenges are exacerbated by high rates of MDR UTI, suggesting a vicious cycle of failed treatment attempts and sustained selection for drug resistance. Whilst individual AB use may contribute to the risk of MDR UTI, our data show that factors related to context are stronger drivers of variations in ABR.Peer reviewe

    Safety of azithromycin in infants under six months of age in Niger: A community randomized trial.

    Get PDF
    BACKGROUND: Mass azithromycin distribution reduces under-5 child mortality. Trachoma control programs currently treat infants aged 6 months and older. Here, we report findings from an infant adverse event survey in 1-5 month olds who received azithromycin as part of a large community-randomized trial in Niger. METHODS AND PRINCIPAL FINDINGS: Active surveillance of infants aged 1-5 months at the time of treatment was conducted in 30 randomly selected communities from within a large cluster randomized trial of biannual mass azithromycin distribution compared to placebo to assess the potential impact on child mortality. We compared the distribution of adverse events reported after treatment among azithromycin-treated versus placebo-treated infants. From January 2015 to February 2018, the caregivers of 1,712 infants were surveyed. Approximately one-third of caregivers reported at least one adverse event (azithromycin: 29.6%, placebo: 34.3%, risk ratio [RR] 0.86, 95% confidence interval [CI] 0.68 to 1.10, P = 0.23). The most commonly reported adverse events included diarrhea (azithromycin: 19.3%, placebo: 28.1%, RR 0.68, 95% CI 0.49 to 0.96, P = 0.03), vomiting (azithromycin: 15.9%, placebo: 21.0%, RR 0.76, 95% CI 0.56 to 1.02, P = 0.07), and skin rash (azithromycin: 12.3%, placebo: 13.6%, RR 0.90, 95% CI 0.59 to 1.37, P = 0.63). No cases of infantile hypertrophic pyloric stenosis were reported. CONCLUSIONS: Azithromycin given to infants aged 1-5 months appeared to be safe. Inclusion of younger infants in larger azithromycin-based child mortality or trachoma control programs could be considered if deemed effective. TRIAL REGISTRATION: ClinicalTrials.gov NCT02048007

    A medical device-grade T1 and ECV phantom for global T1 mapping quality assurance - the T1_1 Mapping and ECV Standardization in cardiovascular magnetic resonance (T1MES) program

    Get PDF
    Background:\textbf{Background:} T1_1 mapping and extracellular volume (ECV) have the potential to guide patient care and serve as surrogate end-points in clinical trials, but measurements differ between cardiovascular magnetic resonance (CMR) scanners and pulse sequences. To help deliver T1_1 mapping to global clinical care, we developed a phantom-based quality assurance (QA) system for verification of measurement stability over time at individual sites, with further aims of generalization of results across sites, vendor systems, software versions and imaging sequences. We thus created T1MES: The T1 Mapping and ECV Standardization Program. Methods:\textbf{Methods:} A design collaboration consisting of a specialist MRI small-medium enterprise, clinicians, physicists and national metrology institutes was formed. A phantom was designed covering clinically relevant ranges of T1_1 and T2_2 in blood and myocardium, pre and post-contrast, for 1.5 T and 3 T. Reproducible mass manufacture was established. The device received regulatory clearance by the Food and Drug Administration (FDA) and Conformité Européene (CE) marking. Results:\textbf{Results:} The T1MES phantom is an agarose gel-based phantom using nickel chloride as the paramagnetic relaxation modifier. It was reproducibly specified and mass-produced with a rigorously repeatable process. Each phantom contains nine differently-doped agarose gel tubes embedded in a gel/beads matrix. Phantoms were free of air bubbles and susceptibility artifacts at both field strengths and T1_1 maps were free from off-resonance artifacts. The incorporation of high-density polyethylene beads in the main gel fill was effective at flattening the B1B_1 field. T1_1 and T2_2 values measured in T1MES showed coefficients of variation of 1 % or less between repeat scans indicating good short-term reproducibility. Temperature dependency experiments confirmed that over the range 15-30 °C the short-T1_1 tubes were more stable with temperature than the long-T1_1 tubes. A batch of 69 phantoms was mass-produced with random sampling of ten of these showing coefficients of variations for T1_1 of 0.64 ± 0.45 % and 0.49 ± 0.34 % at 1.5 T and 3 T respectively. Conclusion:\textbf{Conclusion:} The T1MES program has developed a T1_1 mapping phantom to CE/FDA manufacturing standards. An initial 69 phantoms with a multi-vendor user manual are now being scanned fortnightly in centers worldwide. Future results will explore T1_1 mapping sequences, platform performance, stability and the potential for standardization.This project has been funded by a European Association of Cardiovascular Imaging (EACVI part of the ESC) Imaging Research Grant, a UK National Institute of Health Research (NIHR) Biomedical Research Center (BRC) Cardiometabolic Research Grant at University College London (UCL, #BRC/ 199/JM/101320), and a Barts Charity Research Grant (#1107/2356/MRC0140). G.C. is supported by the National Institute for Health Research Rare Diseases Translational Research Collaboration (NIHR RD-TRC) and by the NIHR UCL Hospitals Biomedical Research Center. J.C.M. is directly and indirectly supported by the UCL Hospitals NIHR BRC and Biomedical Research Unit at Barts Hospital respectively. This work was in part supported by an NIHR BRC award to Cambridge University Hospitals NHS Foundation Trust and NIHR Cardiovascular Biomedical Research Unit support at Royal Brompton Hospital London UK
    • 

    corecore