106 research outputs found
High pretreatment disease burden as a risk factor for infectious complications following CD19 chimeric antigen receptor T-cell therapy for large B-cell lymphoma
Infection has emerged as the chief cause of nonârelapse mortality (NRM) post CD19âtargeting chimeric antigen receptor Tâcell therapy (CARâT) therapy. Even though up to 50% of patients may remain infectionâfree, many suffer multiple severe, lifeâthreatening, or fatal infectious events. The primary aim of this study was to explore severe and lifeâthreatening infections post licensed CARâT therapy in large Bâcell lymphoma, with a focus on the role of disease burden and disease sites in assessing individual risk. We sought to understand the cohort of patients who experience â„2 infections and those at the highest risk of infectious NRM. Our analysis identifies a higher disease burden after bridging therapy as associated with infection events. Those developing â„2 infections emerged as a uniquely highârisk cohort, particularly if the second (or beyond) infection occurred during an episode of immune effector cellâassociated neurotoxicity syndrome (ICANS) or while on steroids and/or anakinra for ICANS. Herein, we also describe the first reported cases of âCARâT cold sepsis,â a phenomenon characterized by the lack of an appreciable systemic inflammatory response at the time of detection of infection. We propose a riskâbased strategy to encourage heightened clinician awareness of cold sepsis, with a view to reducing NRM
Fluid balance and renal replacement therapy initiation strategy : a secondary analysis of the STARRT-AKI trial
Background: Among critically ill patients with acute kidney injury (AKI), earlier initiation of renal replacement therapy (RRT) may mitigate fluid accumulation and confer better outcomes among individuals with greater fluid overload at randomization.Methods: We conducted a pre-planned post hoc analysis of the STandard versus Accelerated initiation of Renal Replacement Therapy in Acute Kidney Injury (STARRT-AKI) trial. We evaluated the effect of accelerated RRT initiation on cumulative fluid balance over the course of 14 days following randomization using mixed models after censoring for death and ICU discharge. We assessed the modifying effect of baseline fluid balance on the impact of RRT initiation strategy on key clinical outcomes. Patients were categorized in quartiles of baseline fluid balance, and the effect of accelerated versus standard RRT initiation on clinical outcomes was assessed in each quartile using risk ratios (95% CI) for categorical variables and mean differences (95% CI) for continuous variables.Results: Among 2927 patients in the modified intention-to-treat analysis, 2738 had available data on baseline fluid balance and 2716 (92.8%) had at least one day of fluid balance data following randomization. Over the subsequent 14 days, participants allocated to the accelerated strategy had a lower cumulative fluid balance compared to those in the standard strategy (4509 (- 728 to 11,698) versus 5646 (0 to 13,151) mL, p = 0.03). Accelerated RRT initiation did not confer greater 90-day survival in any of the baseline fluid balance quartiles (quartile 1: RR 1.11 (95% CI 0.92 to 1.34), quartile 2: RR 1.03 (0.87 to 1.21); quartile 3: RR 1.08 (95% CI 0.91 to 1.27) and quartile 4: RR 0.87 (95% CI 0.73 to 1.03), p value for trend 0.08).Conclusions: Earlier RRT initiation in critically ill patients with AKI conferred a modest attenuation of cumulative fluid balance. Nonetheless, among patients with greater fluid accumulation at randomization, accelerated RRT initiation did not have an impact on all-cause mortality.Peer reviewe
Effective bridging therapy can improve CD19 CAR-T outcomes while maintaining safety in patients with large B-cell lymphoma
The impact of bridging therapy (BT) on CD19-directed chimeric antigen receptor T-cell (CD19CAR-T) outcomes in large B-cell lymphoma (LBCL) is poorly characterised. Current practice is guided by physician preference rather than established evidence. Identification of effective BT modalities and factors predictive of response could improve CAR-T intention to treat and clinical outcomes. We assessed BT modality and response in 375 adult LBCL patients in relation to outcomes following axicabtagene ciloleucel (Axi-cel) or tisagenlecleucel (Tisa-cel). The majority of patients received BT with chemotherapy (57%) or radiotherapy (17%). We observed that BT was safe for patients, with minimal morbidity/mortality. We showed that complete or partial response to BT conferred a 42% reduction in disease progression and death following CD19CAR-T therapy. Multivariate analysis identified several factors associated with likelihood of response to BT, including response to last line therapy, the absence of bulky disease, and the use of Polatuzumab-containing chemotherapy regimens. Our data suggested that complete/partial response to BT may be more important for Tisa-cel than Axi-cel, as all Tisa-cel patients with less than partial response to BT experienced frank relapse within 12 months of CD19CAR-T infusion. In summary, BT in LBCL should be carefully planned towards optimal response and disease debulking, to improve CD19CAR-T patient outcomes. Polatuzumab-containing regimens should be strongly considered for all suitable patients, and failure to achieve complete/partial response to BT pre-Tisa-cel may prompt consideration of further lines of BT where possible
Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimerâs disease
Alzheimerâs disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processesâaggregation of the amyloid-ÎČ (AÎČ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)âare hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of AÎČ plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with AÎČ plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than AÎČ and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with AÎČ and tau.Fil: Johnson, Erik C. B.. University of Emory; Estados UnidosFil: Bian, Shijia. University of Emory; Estados UnidosFil: Haque, Rafi U.. University of Emory; Estados UnidosFil: Carter, E. Kathleen. University of Emory; Estados UnidosFil: Watson, Caroline M.. University of Emory; Estados UnidosFil: Gordon, Brian A.. Washington University in St. Louis; Estados UnidosFil: Ping, Lingyan. University of Emory; Estados UnidosFil: Duong, Duc M.. University of Emory; Estados UnidosFil: Epstein, Michael P.. University of Emory; Estados UnidosFil: McDade, Eric. Washington University in St. Louis; Estados UnidosFil: BarthĂ©lemy, Nicolas R.. Washington University in St. Louis; Estados UnidosFil: Karch, Celeste M.. Washington University in St. Louis; Estados UnidosFil: Xiong, Chengjie. Washington University in St. Louis; Estados UnidosFil: Cruchaga, Carlos. Washington University in St. Louis; Estados UnidosFil: Perrin, Richard J.. Washington University in St. Louis; Estados UnidosFil: Wingo, Aliza P.. Washington University in St. Louis; Estados UnidosFil: Wingo, Thomas S.. University of Emory; Estados UnidosFil: Chhatwal, Jasmeer P.. Harvard Medical School; Estados UnidosFil: Day, Gregory S.. University of Emory; Estados UnidosFil: Noble, James M.. Harvard Medical School; Estados UnidosFil: Berman, Sarah B.. Mayo Clinic; Estados UnidosFil: Martins, Ralph. Edith Cowan University; AustraliaFil: Graff Radford, Neill R.. Univeristy of Pittsburgh. School of Medicine; Estados Unidos. Mayo Clinic; Estados UnidosFil: Surace, Ezequiel Ignacio. FundaciĂłn para la Lucha Contra las Enfermedades NeurolĂłgicas de la Infancia. Instituto de Investigaciones NeurolĂłgicas "RaĂșl Carrea"; Argentina. Consejo Nacional de Investigaciones CientĂficas y TĂ©cnicas; ArgentinaFil: Ortiz, Ana Luisa Sosa. Washington University in St. Louis; Estados UnidosFil: Daniels, Alisha. Washington University in St. Louis; Estados UnidosFil: Courtney, Laura. Washington University in St. Louis; Estados UnidosFil: Supnet Bell, Charlene. Washington University in St. Louis; Estados UnidosFil: Xu, Jinbin. No especifĂca;Fil: Ringman, John. No especifĂca
Two novel loci, COBL and SLC10A2, for Alzheimer's disease in African Americans
INTRODUCTION:
African Americans' (AAs) late-onset Alzheimer's disease (LOAD) genetic risk profile is incompletely understood. Including clinical covariates in genetic analyses using informed conditioning might improve study power.
METHODS:
We conducted a genome-wide association study (GWAS) in AAs employing informed conditioning in 1825 LOAD cases and 3784 cognitively normal controls. We derived a posterior liability conditioned on age, sex, diabetes status, current smoking status, educational attainment, and affection status, with parameters informed by external prevalence information. We assessed association between the posterior liability and a genome-wide set of single-nucleotide polymorphisms (SNPs), controlling for APOE and ABCA7, identified previously in a LOAD GWAS of AAs.
RESULTS:
Two SNPs at novel loci, rs112404845 (P = 3.8 Ă 10-8), upstream of COBL, and rs16961023 (P = 4.6 Ă 10-8), downstream of SLC10A2, obtained genome-wide significant evidence of association with the posterior liability.
DISCUSSION:
An informed conditioning approach can detect LOAD genetic associations in AAs not identified by traditional GWAS
Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimer's disease
Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-& beta;(A & beta;) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A & beta;plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A & beta;plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A & beta;and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A & beta;and tau. Proteomic analysis of cerebrospinal fluid from individuals with autosomal dominant Alzheimer's disease reveals how this complex and chronic disease evolves over many decades
Cerebrospinal fluid proteomics define the natural history of autosomal dominant Alzheimerâs disease
Alzheimerâs disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processesâaggregation of the amyloid- (A ) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)âare hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of A plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with A plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than A and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with A and tau
Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals
IMPORTANCE: Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays.
OBJECTIVE: To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals.
DESIGN, SETTING, AND PARTICIPANTS: Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals.
MAIN OUTCOMES AND MEASURES: The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses.
RESULTS: The African American cohort had a low degree of inbreeding (Fâ~â0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (Pâ=â.004) or greater than 3 Mb (Pâ=â.02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2â=â.04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2â=â.02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2â=â.03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHsâ>1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHsâ>2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHsâ>3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2â=â.006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2â=â.01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers.
CONCLUSIONS AND RELEVANCE: To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals
Insulin/IGF and Sex Hormone Axes in Human Endometrium and Associations with Endometrial Cancer Risk Factors
Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point-object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete. © 2012 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
- âŠ