1,125 research outputs found

    Boundary Spanning Roles in Communities & Organizations: Implications for Adult Educators

    Get PDF
    As adult educators, we work across communities, programs, and organizations. We serve as, work with, and build capacity of boundary spanners. Our collaborations connect people across boundaries and convince others to work together for a common goal. This manuscript explores boundary spanners in three contexts: community partners, contractors, and volunteers

    \u3cem\u3eIn Vitro\u3c/em\u3e Determination of Potency of Small Molecule Inhibitors of Arp2/3 Complex

    Get PDF
    Actin is a key protein building block of actin microfilaments, which are constructed and deconstructed in response to cellular signaling pathways to regulate cellular processes such as motility, division, and endocytosis. Arp2/3 Complex is a 7-subunit protein complex that is in involved in cellular construction of branched actin networks, functioning by attaching to the side of a pre-existing actin filament and nucleating a daughter branch. Overexpression of Arp2/3 complex has been linked to the ability of certain metastatic cancers to proliferate. This work describes the synthesis and in vitro biochemical testing of several molecules predicted by computational docking to be inhibitors of Arp2/3 Complex, and therefore of potential interest in clinical applications. A bulk actin polymerization assay is used as the key method to determine the potency of inhibitor candidates. Structure-activity relationships derived from these results are also discussed

    Quantitative genomics of locomotor behavior in Drosophila melanogaster

    Get PDF
    The locomotor behavior of Drosophila melanogaster was quantified in a large population of inbred lines derived from a single natural population, showing that many pleiotropic genes show correlated transcriptional responses to multiple behaviors

    Implementation of Federal Waivers for Feeding Children in Early Care and Education During the COVID-19 Pandemic

    Get PDF
    Objective: To capture Child and Adult Care Food Program (CACFP) state directors’ experiences implementing federal waivers for feeding children in early care and education (ECE) settings during coronavirus disease 2019. Design: Qualitative semistructured interviews. Setting: Virtual interviews with state CACFP directors. Participants: Child and Adult Care Food Program directors from 21 states from December 2020 to May 2021. Phenomenon of Interest: Implementation of state-level waivers. Analysis: Qualitative thematic analysis. Results: State directors reported that the coronavirus disease 2019 waivers allowed ECE programs to continue feeding children despite being closed or having limited enrollment. The meal pattern, noncongregate feeding, parent/guardian meal pick-up, and monitoring waivers were most frequently used by states. Challenges included maintaining integrity to CACFP meal pattern requirements, addressing the limited capacity of ECE to produce and distribute noncongregate meals, and adapting technology for virtual reviews. Suggested improvements included streamlined communication from the US Department of Agriculture, standing waivers for emergencies, ongoing flexibilities for feeding children, and strategies to increase CACFP enrollment and reduce financial viability requirements for ECE. Conclusions and Implications: Results indicate the need for the US Department of Agriculture to consider issuing and extending waivers, increasing ECE participation in CACFP, and ensuring timely communication and guidance on waiver trackin

    Systems genetics analysis of body weight and energy metabolism traits in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Obesity and phenotypic traits associated with this condition exhibit significant heritability in natural populations of most organisms. While a number of genes and genetic pathways have been implicated to play a role in obesity associated traits, the genetic architecture that underlies the natural variation in these traits is largely unknown. Here, we used 40 wild-derived inbred lines of <it>Drosophila melanogaster </it>to quantify genetic variation in body weight, the content of three major metabolites (glycogen, triacylglycerol, and glycerol) associated with obesity, and metabolic rate in young flies. We chose these lines because they were previously screened for variation in whole-genome transcript abundance and in several adult life-history traits, including longevity, resistance to starvation stress, chill-coma recovery, mating behavior, and competitive fitness. This enabled us not only to identify candidate genes and transcriptional networks that might explain variation for energy metabolism traits, but also to investigate the genetic interrelationships among energy metabolism, behavioral, and life-history traits that have evolved in natural populations.</p> <p>Results</p> <p>We found significant genetically based variation in all traits. Using a genome-wide association screen for single feature polymorphisms and quantitative trait transcripts, we identified 337, 211, 237, 553, and 152 novel candidate genes associated with body weight, glycogen content, triacylglycerol storage, glycerol levels, and metabolic rate, respectively. Weighted gene co-expression analyses grouped transcripts associated with each trait in significant modules of co-expressed genes and we interpreted these modules in terms of their gene enrichment based on Gene Ontology analysis. Comparison of gene co-expression modules for traits in this study with previously determined modules for life-history traits identified significant modular pleiotropy between glycogen content, body weight, competitive fitness, and starvation resistance.</p> <p>Conclusions</p> <p>Combining a large phenotypic dataset with information on variation in genome wide transcriptional profiles has provided insight into the complex genetic architecture underlying natural variation in traits that have been associated with obesity. Our findings suggest that understanding the maintenance of genetic variation in metabolic traits in natural populations may require that we understand more fully the degree to which these traits are genetically correlated with other traits, especially those directly affecting fitness.</p

    Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping

    Get PDF
    Citation: Crespo-Herrera, L. A., Akhunov, E., Garkava-Gustavsson, L., Jordan, K. W., Smith, C. M., Singh, R. P., & Ă…hman, I. (2014). Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping. Theoretical and Applied Genetics, 127(9), 1963-1973.The aphids Rhopalosiphum padi and Schizaphis graminum are important pests of common wheat (Triticum aestivum L.). Characterization of the genetic bases of resistance sources is crucial to facilitate the development of resistant wheat cultivars to these insects. We examined 140 recombinant inbred lines (RILs) from the cross of the susceptible wheat Seri M82 with the synthetic hexaploid wheat CWI76364, resistant to both aphid species. The RILs were phenotyped for R. padi antibiosis and tolerance traits. Phenotyping of S. graminum resistance was based on leaf chlorosis in a greenhouse screening, and also on the number of S. graminum per tiller in a field trial. Seedling pubescence was scored in each RIL. Using a sequence-based genotyping method we located genomic regions associated to these resistance traits. One QTL for R. padi antibiosis was found in chromosome 4BL; it explained 10.2% of phenotypic variation and was located 14.6 cM apart from the pubescence locus. However, we did not find any association between plant pubescence and the other resistance traits. We found two QTLs for tolerance to R. padi in chromosomes 5AL and 5BL, with an epistatic interaction between a locus in chromosome 3AL and the tolerance QTL in 5AL. These genomic regions together explained about 35% of the phenotypic variation. We confirmed the location of a previously reported gene for S. graminum resistance (Gba) in 7DL and found an additional, novel QTL associated with the number of aphids per tiller in chromosome 2DL. This is the first report where resistance to R. padi in wheat is mapped and also where chromosome 2DL shown to be associated with S. graminum resistance

    Epistasis dominates the genetic architecture of Drosophila quantitative traits

    Get PDF
    Epistasis-nonlinear genetic interactions between polymorphic loci-is the genetic basis of canalization and speciation, and epistatic interactions can be used to infer genetic networks affecting quantitative traits. However, the role that epistasis plays in the genetic architecture of quantitative traits is controversial. Here, we compared the genetic architecture of three Drosophila life history traits in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and a large outbred, advanced intercross population derived from 40 DGRP lines (Flyland). We assessed allele frequency changes between pools of individuals at the extremes of the distribution for each trait in the Flyland population by deep DNA sequencing. The genetic architecture of all traits was highly polygenic in both analyses. Surprisingly, none of the SNPs associated with the traits in Flyland replicated in the DGRP and vice versa. However, the majority of these SNPs participated in at least one epistatic interaction in the DGRP. Despite apparent additive effects at largely distinct loci in the two populations, the epistatic interactions perturbed common, biologically plausible, and highly connected genetic networks. Our analysis underscores the importance of epistasis as a principal factor that determines variation for quantitative traits and provides a means to uncover genetic networks affecting these traits. Knowledge of epistatic networks will contribute to our understanding of the genetic basis of evolutionarily and clinically important traits and enhance predictive ability at an individualized level in medicine and agricultur

    Short communication: Landlab v2.0: a software package for Earth surface dynamics

    Get PDF
    umerical simulation of the form and characteristics of Earth's surface provides insight into its evolution. Landlab is an open-source Python package that contains modularized elements of numerical models for Earth's surface, thus reducing time required for researchers to create new or reimplement existing models. Landlab contains a gridding engine which represents the model domain as a dual graph of structured quadrilaterals (e.g., raster) or irregular Voronoi polygon–Delaunay triangle mesh (e.g., regular hexagons, radially symmetric meshes, and fully irregular meshes). Landlab also contains components – modular implementations of single physical processes – and a suite of utilities that support numerical methods, input/output, and visualization. This contribution describes package development since version 1.0 and backward-compatibility-breaking changes that necessitate the new major release, version 2.0. Substantial changes include refactoring the grid, improving the component standard interface, dropping Python 2 support, and creating 31 new components – for a total of 58 components in the Landlab package. We describe reasons why many changes were made in order to provide insight for designers of future packages. We conclude by discussing lessons about the dynamics of scientific software development gained from the experience of using, developing, maintaining, and teaching with Landlab
    • …
    corecore