26 research outputs found

    Patterns and Implications of Gene Gain and Loss in the Evolution of Prochlorococcus

    Get PDF
    Prochlorococcus is a marine cyanobacterium that numerically dominates the mid-latitude oceans and is the smallest known oxygenic phototroph. Numerous isolates from diverse areas of the world's oceans have been studied and shown to be physiologically and genetically distinct. All isolates described thus far can be assigned to either a tightly clustered high-light (HL)-adapted clade, or a more divergent low-light (LL)-adapted group. The 16S rRNA sequences of the entire Prochlorococcus group differ by at most 3%, and the four initially published genomes revealed patterns of genetic differentiation that help explain physiological differences among the isolates. Here we describe the genomes of eight newly sequenced isolates and combine them with the first four genomes for a comprehensive analysis of the core (shared by all isolates) and flexible genes of the Prochlorococcus group, and the patterns of loss and gain of the flexible genes over the course of evolution. There are 1,273 genes that represent the core shared by all 12 genomes. They are apparently sufficient, according to metabolic reconstruction, to encode a functional cell. We describe a phylogeny for all 12 isolates by subjecting their complete proteomes to three different phylogenetic analyses. For each non-core gene, we used a maximum parsimony method to estimate which ancestor likely first acquired or lost each gene. Many of the genetic differences among isolates, especially for genes involved in outer membrane synthesis and nutrient transport, are found within the same clade. Nevertheless, we identified some genes defining HL and LL ecotypes, and clades within these broad ecotypes, helping to demonstrate the basis of HL and LL adaptations in Prochlorococcus. Furthermore, our estimates of gene gain events allow us to identify highly variable genomic islands that are not apparent through simple pairwise comparisons. These results emphasize the functional roles, especially those connected to outer membrane synthesis and transport that dominate the flexible genome and set it apart from the core. Besides identifying islands and demonstrating their role throughout the history of Prochlorococcus, reconstruction of past gene gains and losses shows that much of the variability exists at the “leaves of the tree,” between the most closely related strains. Finally, the identification of core and flexible genes from this 12-genome comparison is largely consistent with the relative frequency of Prochlorococcus genes found in global ocean metagenomic databases, further closing the gap between our understanding of these organisms in the lab and the wild

    The Evolution of Two-Component Systems in Bacteria Reveals Different Strategies for Niche Adaptation

    Get PDF
    Two-component systems including histidine protein kinases represent the primary signal transduction paradigm in prokaryotic organisms. To understand how these systems adapt to allow organisms to detect niche-specific signals, we analyzed the phylogenetic distribution of nearly 5,000 histidine protein kinases from 207 sequenced prokaryotic genomes. We found that many genomes carry a large repertoire of recently evolved signaling genes, which may reflect selective pressure to adapt to new environmental conditions. Both lineage-specific gene family expansion and horizontal gene transfer play major roles in the introduction of new histidine kinases into genomes; however, there are differences in how these two evolutionary forces act. Genes imported via horizontal transfer are more likely to retain their original functionality as inferred from a similar complement of signaling domains, while gene family expansion accompanied by domain shuffling appears to be a major source of novel genetic diversity. Family expansion is the dominant source of new histidine kinase genes in the genomes most enriched in signaling proteins, and detailed analysis reveals that divergence in domain structure and changes in expression patterns are hallmarks of recent expansions. Finally, while these two modes of gene acquisition are widespread across bacterial taxa, there are clear species-specific preferences for which mode is used

    Experimental determination of translational start sites resolves uncertainties in genomic open reading frame predictions – application to Mycobacterium tuberculosis

    Get PDF
    Correct identification of translational start sites is important for understanding protein function and transcriptional regulation. The annotated translational start sites contained in genome databases are often predicted using bioinformatics and are rarely verified experimentally, and so are not all accurate. Therefore, we devised a simple approach for determining translational start sites using a combination of epitope tagging and frameshift mutagenesis. This assay was used to determine the start sites of three Mycobacterium tuberculosis proteins: LexA, SigC and Rv1955. We were able to show that proteins may begin before or after the predicted site. We also found that a small, non-annotated open reading frame upstream of Rv1955 was expressed as a protein, which we have designated Rv1954A. This approach is readily applicable to any bacterial species for which plasmid transformation can be achieved

    Invasion of the Red Seaweed \u3cem\u3eHeterosiphonia japonica\u3c/em\u3e Spans Biogeographic Provinces in the Western North Atlantic Ocean

    Get PDF
    The recent invasion of the red alga Heterosiphonia japonica in the western North Atlantic Ocean has provided a unique opportunity to study invasion dynamics across a biogeographical barrier. Native to the western North Pacific Ocean, initial collections in 2007 and 2009 restricted the western North Atlantic range of this invader to Rhode Island, USA. However, through subtidal community surveys, we document the presence of Heterosiphonia in coastal waters from Maine to New York, USA, a distance of more than 700 km. This geographical distribution spans a well-known biogeographical barrier at Cape Cod, Massachusetts. Despite significant differences in subtidal community structure north and south of Cape Cod, Heterosiphonia was found at all but two sites surveyed in both biogeographic provinces, suggesting that this invader is capable of rapid expansion over broad geographic ranges. Across all sites surveyed, Heterosiphonia comprised 14% of the subtidal benthic community. However, average abundances of nearly 80% were found at some locations. As a drifting macrophyte, Heterosiphonia was found as intertidal wrack in abundances of up to 65% of the biomass washed up along beaches surveyed. Our surveys suggest that the high abundance of Heterosiphonia has already led to marked changes in subtidal community structure; we found significantly lower species richness in recipient communities with higher Heterosiphona abundances. Based on temperature and salinity tolerances of the European populations, we believe Heterosiphonia has the potential to invade and alter subtidal communities from Florida to Newfoundland in the western North Atlantic

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Invasion of the red seaweed Heterosiphonia japonica spans biogeographic provinces in the Western North Atlantic Ocean.

    Get PDF
    The recent invasion of the red alga Heterosiphonia japonica in the western North Atlantic Ocean has provided a unique opportunity to study invasion dynamics across a biogeographical barrier. Native to the western North Pacific Ocean, initial collections in 2007 and 2009 restricted the western North Atlantic range of this invader to Rhode Island, USA. However, through subtidal community surveys, we document the presence of Heterosiphonia in coastal waters from Maine to New York, USA, a distance of more than 700 km. This geographical distribution spans a well-known biogeographical barrier at Cape Cod, Massachusetts. Despite significant differences in subtidal community structure north and south of Cape Cod, Heterosiphonia was found at all but two sites surveyed in both biogeographic provinces, suggesting that this invader is capable of rapid expansion over broad geographic ranges. Across all sites surveyed, Heterosiphonia comprised 14% of the subtidal benthic community. However, average abundances of nearly 80% were found at some locations. As a drifting macrophyte, Heterosiphonia was found as intertidal wrack in abundances of up to 65% of the biomass washed up along beaches surveyed. Our surveys suggest that the high abundance of Heterosiphonia has already led to marked changes in subtidal community structure; we found significantly lower species richness in recipient communities with higher Heterosiphona abundances. Based on temperature and salinity tolerances of the European populations, we believe Heterosiphonia has the potential to invade and alter subtidal communities from Florida to Newfoundland in the western North Atlantic

    Relative abundances of sessile species (seaweeds and sessile invertebrates) in subtidal communities.

    No full text
    <p>North and south refer to the biogeographical barrier at Cape Cod, Massachusetts. Species listed comprised 80% of the overall community, and data are means ±1 At each site, a 20 m transect was haphazardly placed in the subtidal zone, at approximately the mid point of the species’ typical depth range (mean depth = 2.0±0.11 m). We placed a 0.0625 m<sup>2</sup> quadrat every 2 m along the transect. Within each quadrat, the percent cover of each macroalgal and sessile invertebrate species was recorded. When present, a subsample of <i>Heterosiphonia</i> individuals was collected from each site. Upon collection, specimens were returned to the laboratory, where field identifications were confirmed under a compound microscope (100X) using characteristics from Schneider <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0062261#pone.0062261-Schneider1" target="_blank">[8]</a>. All individuals collected were either vegetative or tetrasporic. No fertile gametophytes were found during our sampling. At an additional 12 sites within our subtidal survey range, we examined the intertidal and/or shallow subtidal zone for evidence of drifting <i>Heterosiphonia</i> individuals. At each of these sites, individuals were collected and identified under a field microscope (40X) or laboratory microscope (100X). Due to logistical constraints, we clustered all crustose coralline algal species together, as <i>in situ</i> identifications to the species level proved impossible for this group. When possible, a subsample of <i>Heterosiphonia</i> individuals from most locations was pressed and deposited in the University of Rhode Island (KIRI) or Northeastern University (HNUB) herbarium collections.</p

    Seasonality of <i>Heterosiphonia japonica</i> abundances.

    No full text
    <p><i>Notes</i>: Within subtidal communities, <i>Heterosiphonia</i> abundance was at least two orders of magnitude higher in early summer (May/June) than during late summer (August; <i>X</i><sup>2</sup> = 1676.52, p<0.001). At least twice as much <i>Heterosiphonia</i> biomass was found in intertidal wrack mats during June than in other months (F<sub>6,45</sub> = 12.66, p<0.001).</p
    corecore