77 research outputs found

    Neighborhood satisfaction, functional limitations, and self-efficacy influences on physical activity in older women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perceptions of one's environment and functional status have been linked to physical activity in older adults. However, little is known about these associations over time, and even less about the possible mediators of this relationship. We examined the roles played by neighborhood satisfaction, functional limitations, self-efficacy, and physical activity in a sample of older women over a 6-month period.</p> <p>Methods</p> <p>Participants (<it>N </it>= 137, <it>M </it>age = 69.6 years) completed measures of neighborhood satisfaction, functional limitations, self-efficacy, and physical activity at baseline and again 6 months later.</p> <p>Results</p> <p>Analyses indicated that changes in neighborhood satisfaction and functional limitations had direct effects on residual changes in self-efficacy, and changes in self-efficacy were associated with changes in physical activity at 6 months.</p> <p>Conclusion</p> <p>Our findings support a social cognitive model of physical activity in which neighborhood satisfaction and functional status effects on physical activity are in part mediated by intermediate individual outcomes such as self-efficacy. Additionally, these findings lend support to the position that individual perceptions of both the environment and functional status can have prospective effects on self-efficacy cognitions and ultimately, physical activity behavior.</p

    Thermodynamics of Biomolecular Recognition

    Get PDF
    Thermodynamic aspects of molecular recognition have been studied using yeast phosphoglycerate kinase (PGK) and two antibiotics, ristocetin and vancomycin, as model systems. The binding of 3 natural substrates, ADP, ATP and 3-phosphoglycerate to wild-type and two mutant forms of PGK was examined using kinetic techniques and isothermal titration microcalorimetry. The latter technique was also used to investigate the binding of various ligand molecules to PGK and to study the formation of the ternary complex- PGK.3-PG.ADP. The thermodynamic parameters (Ka, Delta

    Feasibility and outcomes of Fibreoptic Endoscopic Evaluation of Swallowing following prophylactic swallowing rehabilitation in head and neck cancer

    Get PDF
    Objectives Investigate the feasibility and outcomes of fibreoptic endoscopic evaluation of swallowing (FEES) following a programme of prophylactic swallowing exercises in head and neck cancer (HNC) patients treated with radiotherapy. Design Prospective, single cohort, feasibility study. Setting Three head and neck cancer centres in Scotland. Participants Pre‐radiotherapy HNC patients who consented to participate in a prophylactic swallowing intervention. Outcome measures FEES recruitment and retention rates, assessment acceptability and compliance, qualitative process evaluation. Results Higher rates of recruitment and retention were achieved in centres where FEES equipment was available on site. Travel and anticipated discomfort were barriers to recruitment. Data completion was high for all rating scales, with goo d reliability. Following radiotherapy, swallowing safety significantly deteriorated for liquid boluses (p=0.005‐0.03); pharyngeal residue increased for liquid and semi‐solid boluses. Pharyngo‐laryngeal oedema was present pre‐treatment and significantly increased post‐radiotherapy (p=0.001). Patients generally reported positive experience of FEES for their own learning and establishing a baseline. Conclusions FEES is an acceptable method of assessing patients for a prophylactic swallowing intervention and offers some additional information missing from VF. Barriers have been identified and should be taken into account in order to maximise recruitment for future trials

    Cardiorespiratory fitness levels and body mass index of pre-adolescent children and older adults during the COVID-19 pandemic

    Get PDF
    IntroductionThe social and behavioral effects of the COVID-19 pandemic have impacted the health and physiology of most people, including those never diagnosed with COVID-19. While the impact of the pandemic has been felt across the lifespan, its effects on cardiorespiratory fitness (commonly considered a reflection of total body health) of older adults and children may be particularly profound due to social distancing and stay-at-home advisories, as well as the closure of sport facilities and non-essential businesses. The objective of this investigation was to leverage baseline data from two ongoing clinical trials to determine if cardiorespiratory fitness and body mass index were different during COVID-19 relative to before COVID-19 in older adults and children.MethodsHealthy older individuals (N = 593; 65–80 years) and 200 typically developing children (8–10 years) completed a graded maximal exercise test and had their height and weight measured.ResultsResults revealed that older adults and children tested during COVID-19 had significantly lower cardiorespiratory fitness levels than those tested before COVID-19 shutdowns (older adults: 30% lower; children: 53% lower; p's ≤ 0.001). In addition, older adults and children tested during COVID-19 had significantly higher BMI (older adults: 31.34 ± 0.57 kg/m2, p = 0.004; children: 19.27 ± 0.44 kg/m2, p = 0.05) than those tested before COVID-19 shutdowns (older adults: 29.51 ± 0.26 kg/m2, children: 18.13 ± 0.35 kg/m2). However, these differences in BMI did not remain significant when controlling for cardiorespiratory fitness.DiscussionResults from this investigation indicate that the COVID-19 pandemic, and behavior changes taken to reduce potential exposure, may have led to lower cardiorespiratory fitness levels in older adults and children, as well as higher body mass index. These findings provide relevant public health information as lower cardiorespiratory fitness levels and higher body mass indexes recorded during the pandemic could have far-reaching and protracted health consequences. Public health guidance is needed to encourage physical activity to maintain cardiorespiratory fitness and healthy body composition.Clinical trial registrationOlder adults: https://clinicaltrials.gov/ct2/show/NCT02875301, identifier: NCT02875301; Children: https://clinicaltrials.gov/ct2/show/NCT03592238, identifier: NCT03592238

    Structural Basis of Gate-DNA Breakage and Resealing by Type II Topoisomerases

    Get PDF
    Type II DNA topoisomerases are ubiquitous enzymes with essential functions in DNA replication, recombination and transcription. They change DNA topology by forming a transient covalent cleavage complex with a gate-DNA duplex that allows transport of a second duplex though the gate. Despite its biological importance and targeting by anticancer and antibacterial drugs, cleavage complex formation and reversal is not understood for any type II enzyme. To address the mechanism, we have used X-ray crystallography to study sequential states in the formation and reversal of a DNA cleavage complex by topoisomerase IV from Streptococcus pneumoniae, the bacterial type II enzyme involved in chromosome segregation. A high resolution structure of the complex captured by a novel antibacterial dione reveals two drug molecules intercalated at a cleaved B-form DNA gate and anchored by drug-specific protein contacts. Dione release generated drug-free cleaved and resealed DNA complexes in which the DNA gate instead adopts an unusual A/B-form helical conformation with a Mg2+ ion repositioned to coordinate each scissile phosphodiester group and promote reversible cleavage by active-site tyrosines. These structures, the first for putative reaction intermediates of a type II topoisomerase, suggest how a type II enzyme reseals DNA during its normal reaction cycle and illuminate aspects of drug arrest important for the development of new topoisomerase-targeting therapeutics

    High-throughput crystallography reveals boron-containing inhibitors of a Penicillin-binding protein with di- and tricovalent binding modes

    Get PDF
    The effectiveness of β-lactam antibiotics is increasingly compromised by β-lactamases. Boron-containing inhibitors are potent serine-β-lactamase inhibitors, but the interactions of boron-based compounds with the penicillin-binding protein (PBP) β-lactam targets have not been extensively studied. We used high-throughput X-ray crystallography to explore reactions of a boron-containing fragment set with the PBP3 (PaPBP3). Multiple crystal structures reveal that boronic acids react with PBPs to give tricovalently linked complexes bonded to Ser294, Ser349, and Lys484 of PaPBP3; benzoxaboroles react with PaPBP3 via reaction with two nucleophilic serines (Ser294 and Ser349) to give dicovalently linked complexes; and vaborbactam reacts to give a monocovalently linked complex. Modifications of the benzoxaborole scaffold resulted in a moderately potent inhibition of PaPBP3, though no antibacterial activity was observed. Overall, the results further evidence the potential for the development of new classes of boron-based antibiotics, which are not compromised by β-lactamase-driven resistance

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    SNi from SN2: a front-face mechanism ‘synthase’ engineered from a retaining hydrolase

    Get PDF
    SNi or SNi-like mechanisms, in which leaving group departure and nucleophile approach occur on the same ‘front’ face, have been observed previously experimentally and computationally in both the chemical and enzymatic (glycosyltransferase) substitution reactions of α-glycosyl electrophiles. Given the availability of often energetically comparable competing pathways for substitution (SNi vs SN1 vs SN2) the precise modulation of this archetypal reaction type should be feasible. Here, we show that the drastic engineering of a protein that catalyzes substitution, a retaining β-glycosidase (from Sulfolobus solfataricus SSβG), apparently changes the mode of reaction from “SN2” to “SNi”. Destruction of the nucleophilic Glu387 of SSβG-WT through Glu387Tyr mutation (E387Y) created a catalyst (SSβG-E387Y) with lowered but clear transglycosylation substitution activity with activated substrates, altered substrate and reaction preferences and hence useful synthetic (‘synthase’) utility by virtue of its low hydrolytic activity with unactivated substrates. Strikingly, the catalyst still displayed retaining β stereoselectivity, despite lacking a suitable nucleophile; pH-activity profile, mechanism-based inactivators and mutational analyses suggest that SSβG-E387Y operates without either the use of nucleophile or general acid/base residues, consistent with a SNi or SNi-like mechanism. An x-ray structure of SSβG-E387Y and subsequent metadynamics simulation suggest recruitment of substrates aided by a π-sugar interaction with the introduced Tyr387 and reveal a QM/MM free energy landscape for the substitution reaction catalyzed by this unnatural enzyme similar to those of known natural, SNi-like glycosyltransferase (GT) enzymes. Proton flight from the putative hydroxyl nucleophile to the developing p-nitrophenoxide leaving group of the substituted molecule in the reactant complex creates a hydrogen bond that appears to crucially facilitate the mechanism, mimicking the natural mechanism of SNi-GTs. An oxocarbenium ion-pair minimum along the reaction pathway suggests a step-wise SNi-like DN*ANss rather than a concerted SNi DNAN mechanism. This first observation of a front face mechanism in a β-retaining glycosyl transfer enzyme highlights, not only that unusual SNi reaction pathways may be accessed through direct engineering of catalysts with suitable environments, but also suggests that ‘β-SNi’ reactions are also feasible for glycosyl transfer enzymes and the more widespread existence of SNi or SNi-like mechanism in nature
    corecore