1,427 research outputs found

    Dark solitons in optical communication systems

    Get PDF
    This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background

    Deep-Learning for Classification of Colorectal Polyps on Whole-Slide Images

    Full text link
    Histopathological characterization of colorectal polyps is an important principle for determining the risk of colorectal cancer and future rates of surveillance for patients. This characterization is time-intensive, requires years of specialized training, and suffers from significant inter-observer and intra-observer variability. In this work, we built an automatic image-understanding method that can accurately classify different types of colorectal polyps in whole-slide histology images to help pathologists with histopathological characterization and diagnosis of colorectal polyps. The proposed image-understanding method is based on deep-learning techniques, which rely on numerous levels of abstraction for data representation and have shown state-of-the-art results for various image analysis tasks. Our image-understanding method covers all five polyp types (hyperplastic polyp, sessile serrated polyp, traditional serrated adenoma, tubular adenoma, and tubulovillous/villous adenoma) that are included in the US multi-society task force guidelines for colorectal cancer risk assessment and surveillance, and encompasses the most common occurrences of colorectal polyps. Our evaluation on 239 independent test samples shows our proposed method can identify the types of colorectal polyps in whole-slide images with a high efficacy (accuracy: 93.0%, precision: 89.7%, recall: 88.3%, F1 score: 88.8%). The presented method in this paper can reduce the cognitive burden on pathologists and improve their accuracy and efficiency in histopathological characterization of colorectal polyps, and in subsequent risk assessment and follow-up recommendations

    A New Class of non-Hermitian Quantum Hamiltonians with PT Symmetry

    Full text link
    In a remarkable development Bender and coworkers have shown that it is possible to formulate quantum mechanics consistently even if the Hamiltonian and other observables are not Hermitian. Their formulation, dubbed PT quantum mechanics, replaces hermiticity by another set of requirements, notably that the Hamiltonian should be invariant under the discrete symmetry PT, where P denotes parity and T denotes time reversal. All prior work has focused on the case that time reversal is even (T^2 = 1). We generalize the formalism to the case of odd time reversal (T^2 = -1). We discover an analogue of Kramer's theorem for PT quantum mechanics, present a prototypical example of a PT quantum system with odd time reversal, and discuss potential applications of the formalism. Odd time reversal symmetry applies to fermionic systems including quarks and leptons and a plethora of models in nuclear, atomic and condensed matter physics. PT quantum mechanics makes it possible to enlarge the set of possible Hamiltonians that physicists could deploy to describe fundamental physics beyond the standard model or for the effective description of condensed matter phenomena.Comment: Replaced submitted version with accepted version; to appear in Phys Rev

    Cyber-Systemic Themes in MFT Literature

    Full text link
    Abstract: In the fifteen years since the explosion of the Internet, using cyber technology for work & social functions has exponentially increased. Yet the questions around how to manage such changes remain elusive in family therapy literature. In this investigation, we conducted a content analysis to determine to what extent marriage & family therapy (MFT) journals have responded to the integration of the Internet in couple & family life. We found 79 of 13,274 articles across seventeen journals focused on the Internet in some capacity supporting the contention that cyber issues are largely ignored within the MFT field

    Assessment of the Compositional Influences on the Toughness of TiCr\u3csub\u3e2\u3c/sub\u3e-Base Laves Phase Alloys

    Get PDF
    Systematic studies of alloys based on TiCr, have been performed in order to improve the toughness of Laves phase intermetallics. The extent to which alloy compositions and annealing treatments influence the toughness was quantified by Vickers indentation. The single-phase Laves behavior was first established by studying stoichiometric and nonstoichiometric TiCr,. Next, alloying effects were investigated with ternary Laves phases based on TiCr2. Different microstructures of two-phase alloys consisting of (Ti,Cr)-bcc+TiCr2, were also examined. Various toughening theories based on vacancies, site-substitutions, crystal structure (C14, C36, or Cl5) stabilization, and the presence of a second phase were evaluated. The most effective factors improving the toughness of TiCr2, were determined, and toughening mechanisms are suggested

    From "Thumbs Up" to "10 out of 10": Reconsidering Scalar Feedback in Interactive Reinforcement Learning

    Full text link
    Learning from human feedback is an effective way to improve robotic learning in exploration-heavy tasks. Compared to the wide application of binary human feedback, scalar human feedback has been used less because it is believed to be noisy and unstable. In this paper, we compare scalar and binary feedback, and demonstrate that scalar feedback benefits learning when properly handled. We collected binary or scalar feedback respectively from two groups of crowdworkers on a robot task. We found that when considering how consistently a participant labeled the same data, scalar feedback led to less consistency than binary feedback; however, the difference vanishes if small mismatches are allowed. Additionally, scalar and binary feedback show no significant differences in their correlations with key Reinforcement Learning targets. We then introduce Stabilizing TEacher Assessment DYnamics (STEADY) to improve learning from scalar feedback. Based on the idea that scalar feedback is muti-distributional, STEADY re-constructs underlying positive and negative feedback distributions and re-scales scalar feedback based on feedback statistics. We show that models trained with \textit{scalar feedback + STEADY } outperform baselines, including binary feedback and raw scalar feedback, in a robot reaching task with non-expert human feedback. Our results show that both binary feedback and scalar feedback are dynamic, and scalar feedback is a promising signal for use in interactive Reinforcement Learning

    6'-Methoxy Raloxifene-analog enhances mouse bone properties with reduced estrogen receptor binding

    Get PDF
    Raloxifene (RAL) is an FDA-approved drug used to treat osteoporosis in postmenopausal women. RAL suppresses bone loss primarily through its role as a selective estrogen receptor modulator (SERM). This hormonal estrogen therapy promotes unintended side effects, such as hot flashes and increased thrombosis risk, and prevents the drug from being used in some patient populations at-risk for fracture, including children with bone disorders. It has recently been demonstrated that RAL can have significant positive effects on overall bone mechanical properties by binding to collagen and increasing bone tissue hydration in a cell-independent manner. A Raloxifene-Analog (RAL-A) was synthesized by replacing the 6-hydroxyl substituent with 6-methoxy in effort to reduce the compound's binding affinity for estrogen receptors (ER) while maintaining its collagen-binding ability. It was hypothesized that RAL-A would improve the mechanical integrity of bone in a manner similar to RAL, but with reduced estrogen receptor binding. Molecular assessment showed that while RAL-A did reduce ER binding, downstream ER signaling was not completely abolished. In-vitro, RAL-A performed similarly to RAL and had an identical concentration threshold on osteocyte cell proliferation, differentiation, and function. To assess treatment effect in-vivo, wildtype (WT) and heterozygous (OIM+/-) female mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL or RAL-A from 8 weeks to 16 weeks of age. There was an untreated control group for each genotype as well. Bone microarchitecture was assessed using microCT, and mechanical behavior was assessed using 3-point bending. Results indicate that both compounds produced analogous gains in tibial trabecular and cortical microarchitecture. While WT mechanical properties were not drastically altered with either treatment, OIM+/- mechanical properties were significantly enhanced, most notably, in post-yield properties including bone toughness. This proof-of-concept study shows promising results and warrants the exploration of additional analog iterations to further reduce ER binding and improve fracture resistance

    Prescribed moorland burning meets good practice guidelines: A monitoring case study using aerial photography in the Peak District, UK

    Get PDF
    AbstractUpland moors in the UK have been managed for centuries using rotational prescribed-burning, but in recent years there has been contentious debate over its continuing use due to varying effects on moorland ecosystem services. Prescribed-burning should only be carried out using good-practice codes, which include restrictions on the size, location and frequency of burns. Good burning practice is an indicator of management standards and habitat condition in moorland landscapes. However, there has been little attempt to assess management performance with respect to these restrictions. We investigated prescribed-burning on a case-study estate (Howden Moor) in the Peak District National Park from 1988 to 2009 using management maps and aerial photography. The annual area burned (0.9%) was far below recommendations (10%) and patches were in keeping with the target sizes specified (mean±se: 2370±70 m2). The risk of a large or escaped fire was very low, with less than 1% of fires greater than 15,000m2. However, only 28.9% of the total burnable area was burned, leaving the rest unmanaged and accumulating fuel. Future guidelines might recommend the application of prescribed-burning across the range of Calluna vulgaris growth phases, to reduce fuel load and promote biodiversity at the landscape scale. We show that vegetation mapping and aerial photography are an effective method for monitoring prescribed-burning practice on moorlands. The information derived from such monitoring studies should lead to greater confidence in the standard of prescribed-burning and adherence to good-practice guidelines and requirements imposed by statutory authorities

    Zoledronate and Raloxifene combination therapy enhances material and mechanical properties of diseased mouse bone

    Get PDF
    Current interventions to reduce skeletal fragility are insufficient at enhancing both the quantity and quality of bone when attempting to improve overall mechanical integrity. Bisphosphonates, such as Zoledronate (ZOL), are used to treat a variety of bone disorders by increasing bone mass to decrease fracture risk, but long-term use has been shown in some settings to compromise bone quality. Alternatively, Raloxifene (RAL) has recently been demonstrated to improve tissue quality and overall mechanical properties in a cell-independent manner by binding to collagen and increasing tissue hydration. We hypothesized that a combination of RAL and ZOL would improve mechanical and material properties of bone more than either monotherapy alone by enhancing both quantity and quality. In this study, wildtype (WT) and heterozygous (OIM+/−) male mice from the Osteogenesis Imperfecta (OI) murine model were treated with either RAL, ZOL, or both from 8 weeks to 16 weeks of age. Using the OIM model allows for investigation of therapeutic effects on a quality-based bone disease. Combination treatment resulted in higher trabecular architecture, cortical mechanical properties, and cortical fracture toughness in diseased mouse bone. Two fracture toughness properties, which are direct measures of the tissue's ability to resist the initiation and propagation of a crack, were significantly improved with combination treatment in OIM+/− compared to control. There was no significant effect on fracture toughness with either monotherapy alone in either genotype. Following the mass-based effects of ZOL, trabecular bone volume fraction was significantly higher with combination treatment in both genotypes. Combination treatment resulted in higher ultimate stress in both genotypes. RAL and combination treatment in OIM+/− also increased resilience compared to the control. In conclusion, this study demonstrates the beneficial effects of using combination drug treatments to increase bone mass while simultaneously improving tissue quality, especially to enhance the mechanical integrity of diseased bone. Combination therapies could be a potential method to improve bone health and combat skeletal fragility on both the microscopic and macroscopic levels
    • …
    corecore