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This thesis presents experimental and theoretical work on the use of dark optical
solitons as data carriers in communications systems. The background chapters
provide an introduction to nonlinear optics, and to dark solitons, described as
intensity dips in a bright background, with an asymmetrical phase profile. The
motivation for the work is explained, considering both the superior stability of
dark solitons and the need for a soliton solution suitable for the normal, rather
than the anomalous (bright soliton) dispersion regime.

The first chapters present two generation techniques, producing packets of dark
solitons via bright pulse interaction, and generating continuous trains of dark
pulses using a fibre laser. The latter were not dark solitons, but were suitable
for imposition of the required phase shift by virtue of their extreme stability.

The later chapters focus on the propagation and control of dark solitons. Their
response to periodic loss and gain is shown to result in the exponential growth
of spectral sidebands. This may be suppressed by reducing the periodicity of
the loss/gain cycle or using periodic filtering. A general study of the response
of dark solitons to spectral filtering is undertaken, showing dramatic differences
in the behaviour of black and 99.9% grey solitons. The importance of this result
is highlighted by simulations of propagation in noisy systems, where the timing
jitter resulting from random noise is actually enhanced by filtering. The results
of using sinusoidal phase modulation to control pulse position are presented,
showing that the control is at the expense of serious modulation of the bright
background.

It is concluded that in almost every case, dark and bright solitons have very
different properties, and to continue to make comparisons would not be so
productive as to develop a deeper understanding of the interactions between
the dark soliton and its bright background.
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Chapter 1

Linear and nonlinear fibre

optics.

Dark opfical solitons have long been considered an interesting mathematical
phenomenon, but in the last few years improvements in analytical and experi-
mental tools have allowed workers to demonstrate some of their more practical
uses. Generally described as intensity dips in a bright background, they possess
in addition an asymmetric phase profile. This is an unusual feature of a stable

pulse and one which is responsible for many of their unique responses.

Solitons form as a result of interplay between linear and nonlinear effects, both
of which are considered problems in traditional communication systems. Bright
soliton research is very much more advanced than the dark soliton work, and
bright solitons are widely regarded as elegant and ‘natural’ carriers for high-
speed data communications, with dark solitons having been largely ignored until

recently.

However, many of the key features of the success of bright solitons are due to

their generic soliton properties, not specifically to their form as bright pulses of
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light. Studies have shown that dark solitons can exhibit greater stability than
the more familiar bright solitons in some situations. Also, for those fibre com-
munication systems currently in place unsuitable for bright solitons, changing
to solitons as the data carriers (with all the advantages of stability this can

bring) would mean implementing a dark soliton solution.

This chapter provides a background to basic linear and nonlinear optics, as
applied to optical communications. It includes discussions of loss, dispersion,
and the various effects resulting from the nonlinear response of silica to high-
intensity electro-magnetic fields. It concludes with the modelling of these effects
using the nonlinear Schroedinger equations, and the derivation of the bright and

dark soliton solutions to this equation.

1.1 Introduction

It is now widely recognised that optical fibre technology provides the fastest
and most secure method of transmitting large amounts of data very cheaply.
With the recent huge growth in demand for Internet services such as electronic
mail and the World Wide Web, any techniques for increasing bandwidth and
reliability of communications systems are of great commercial value. One such
technique is based on optical soliton technology, which uses the nonlinear prop-
erties of the interaction between light and silica to produce either bright or dark

optical pulses (dips in a bright background) with remarkable stability.

In addition to their obvious commercial importance, the methods considered
here are also of considerable mathematical interest, since the study of solitons
1s a branch of nonlinear physics. Solitons provide one of the first clear examples
that the complexity of nonlinear systems could be harnessed and put to good

use.
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To understand the properties of dark temporal solitons it is first necessary to
consider the behaviour of light in optical fibres. There are various different forms
of this behaviour, which can be broadly separated into linear and nonlinear
responses. Linear effects, such as loss and chromatic dispersion, will be observed
independent of the optical power in the signal, whereas the various nonlinear

effects are functions of power.

1.2 Linear Propagation

Early work with optical ﬁhbres concentrated exclusively on the linear response
of glass to light[1]. At the very simplest level, a linear system will produce a
predictable quantity Y * z in response to an input z. If the input z is larger,
whether it be a pulse of light entering a fibre, the pressure applied to the
accelerator pedal or money owed to the bank at a fixed rate of interest, the
corresponding output will change by the same percentage, resulting in more

light at the output of a fibre, an increase in engine speed, or more debt.

When studying linear propagation in fibres there are two main effects of concern
to systems designers; loss of power during transmission, and chromatic disper-
sion. The former results from a combination of many different effects, and the
latter is due to the wavelength dependence of the speed of light in most media,

well illustrated by the splitting of white light by a prism.

1.2.1 Loss

The loss in power which a signal suffers during propagation depends mainly
on the wavelength of the light. Various effects contribute to this wavelength

dependence. These include intrinsic attenuation due to absorption of energy
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Figure 1.1: The importance of the different loss mechanisms to the wavelength
dependent loss profile of silicon glass.

by the silica atoms, extrinsic attenuation due to the presence of impurities

introduced into the fibre, and Rayleigh scattering.

The lower limit on loss for a given type of fibre is determined by the minimum
absorption of energy by the basic fibre material at a given wavelength. For
example, the minimum loss in pure silica fibre is 0.15 decibels per kilometre, and
occurs at a wavelength of 1.55um. This minimum results from the combination
of the losses from the electron absorption bands at short wavelengths and losses

related to the atomic vibration bands at long wavelengths (see figure 1.1).

In addition to intrinsic fibre losses there is the possibility of absorption by
materials which have been introduced into the fibre, deliberately or otherwise,
during manufacture. The most significant external contribution to the overall
fibre loss results from the presence of OH™ ions. In the early days of fibre
manufacture this was the main limitation on performance, but improvements in

maintaining a dry atmosphere during forming and pulling have greatly reduced
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these losses. Figure 1.1 (solid line) shows a typical loss profile for standard fibre.
Notice the OH™ peak at 1.4um, which separates the low-loss region into two
areas, the second and third telecommunications windows. (The first, centred

around 0.9um, was of greater importance when water losses were high.)

Rayleigh Scattering is the final significant mechanism resulting in wavelength
dependent loss and dominates at short wavelengths. It is caused by microscopic
variations in the fibre composition, which produce variations in refractive index
over scales which are short with respect to the wavelength of the light. These
local fluctuations scatter light in all directions. The same effect can be seen
on a clear day, where scattering of the shorter wavelengths makes the sky look

blue.

1.2.2 Loss Compensation Techniques.

Fibre loss presents a significant limit to the distance over which signals can be
transmitted and received without error. Various techniques have been proposed
to restore signal energy lost during propagation. Traditionally, long-haul optical
systems have used electronic transceivers to detect incoming signals and trans-
mit clean pulses into the next span of fibre (see figure 1.2). The maximum span
between transceivers is then a function of input power, fibre loss and receiver

sensitivity.

There are various disadvantages to electronic regeneration of optical signals.
Upgrading the system to a higher data rate means replacing all the regenerators
in the line, and the time taken to detect and retransmit presents a transmission
bottleneck caused by the maximum response speed of the electronic components.
Systems which use multiple wavelengths in the same fibre to increase the total
data flow rate must use wavelength splitters and recombiners at each stage, as

well as circuitry designed to respond to each of the wavelengths used.
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Figure 1.2: Schematic of a traditional long-haul transmission system, showing
the repeated use of detection and retransmission to reduce the effects of loss.
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Figure 1.3: Schematic of transmission system using in-fibre amplification.
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With the advent of rare-earth doped fibre technology it has become possible
to amplify optical signals in-fibre (see figure 1.3). The most commonly used
dopant is erbium, which emits over a range of up to 120nm, centred about
the third telecommunications window at 1550nm|2],{3]. The use of all-optical
amplifiers neatly removes the problems of data-rate and wavelength dependency
associated with earlier schemes, and so the problem becomes one of maintaining
pulse profiles over very long distances without the reshaping function originally

provided by the electronics.

The most significant effects in pulse reshaping during propagation are due to
dispersion, spontaneous emission noise produced and amplified at each amplifier
and, at higher powers, the nonlinear response of the medium® The success of
erbium-doped fibre amplifiers in extending the potential of optical communica-
tions has meant that attention is now being focused on solutions which combine

linear and nonlinear effects to produce pulses with high stability.

1.2.3 Dispersion.
Chromatic dispersion.

Chromatic dispersion originates from the characteristic resonances at which a
material absorbs electro-magnetic radiation. Effectively, the response of the
medium, and therefore the speed of propagation is related to the optical fre-
quency w of the field in question. Since pulses of light are a combination of a
range of different optical frequencies this results in pulse broadening. The most
important result of this for communications systems is the very severe limits
which it presents in terms of maximum bit rate and pulse spacing before the

overlap of broadened pulses causes receiver errors.

The effects of fibre dispersion can be approximated by expanding the mode

22



propagation constant 3 about the centre frequency wy as follows.

B(w) :n(w)%2ﬁ0+ﬁ1(w—wo)+%ﬁg(w——wo)2+--° (1.1)

where n(w) is the refractive index of the material w and c is the speed of light in
a vacuum. The parameters ; and 3, can be found from the refractive index and
its derivatives. The rate of movement of a pulse envelope, the group velocity, is

given by v, = 1/4;.

1 dn 1
ﬁ —-1 QEi_T_l_f_ _d_Q_TE (1 3)
27 e Vdw wde ’

Signals for which the group velocity dispersion parameter (3, is positive are
sald to experience normal dispersion, and signals beyond this point experience
anomalous dispersion. The changeover wavelength is known as the zero disper-
sion point, and in standard fibres occurs at a wavelength around 1.27um. The
phenomenon of waveguide dispersion (see section 1.2.3) can be used to move

the zero dispersion point towards longer wavelengths.

It is normally only necessary to consider the effects of f;, and [, unless the
signal pulse width is very short (sub-picosecond) or the signal wavelength is

close to the zero dispersion point.

There is a third dispersion parameter, D, which defines pulse broadening as a
function of wavelength rather than optical frequency. It is often used in the

literature instead of f5, and both terms will be used in this work.

27ce
D2 = —*/\—2~,62 (14)
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Waveguide Dispersion.

Waveguide dispersion occurs because a single mode fibre is made up of a core, in
which approximately 80% of the optical power will propagate, and a cladding of
a lower refractive index, which forms the waveguide used to contains the signal.
This small difference in refractive index means that the effective mode index is
slightly less than the core index, and the zero dispersion point is shifted towards
longer wavelengths. The specific change produced is wavelength dependent, and
can be controlled by careful design of the fibre profile, for example using multiple

cladding layers.

This is often done deliberately to produce fibres with a zero dispersion point
around the minimum loss region near 1.5um, to produce very high dispersion

fibre for use in dispersion tailoring, or to produce dispersion flattened fibre.

For the remainder of this work, the term dispersion will refer to the combined

effects of both waveguide and material dispersion at any wavelength.

1.2.4 Dispersion and Pulse Propagation.

The important feature of dispersion from a communications standpoint is the
effect of the group velocity dispersion (GVD) parameter 3, on pulse shape
during propagation. As was mentioned in section 1.2.3, a pulse of light is made
up of a range of optical frequencies, rather than a single discrete frequency,
and each of these will experience a slightly different response from the material

through which the pulse is travelling.

The phase of each spectral component will be changed relative to the central
frequency, resulting in a retardation of some and an acceleration of others which

translates in the time domain into a broadening of the pulse. No new spectral
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components are generated. The amount of broadening will depend on the sign
of the dispersion parameter at the wavelength concerned, and also on any initial

chirp on the pulse.

It is useful to introduce a length scale over which such effects become important

and a commonly used scale is the dispersion length Lp. This is given by:

Lp= Tlg‘WHM/(l-BBIIBQD (1.5)

where Trw gar is the pulse width at the point of half maximum intensity. This
corresponds to the distance over which the pulse width of an initially unchirped
gaussian pulse increases by a factor of v/2. For pulses with non-gaussian profiles,
the length Lp is used as defined in equation 1.5, although the:broadening rate

will vary depending on the exact profile.

Taking the example of propagation in the anomalous dispersion regime, the blue
(or short wavelength) spectral components of a pulse will be advanced in phase
compared to the longer wavelength components. This results in a net time
delay between the different frequencies with blue components shifting towards
the leading edge of the pulse and the red moving towards the trailing edge, and
hence a broader pulse. The chirp dw will be positive at the leading edge of the
pulse and negative at the trailing edge, a down-chirped pulse. Figure 1.4 shows
the variation in instantaneous frequency across such a pulse, while figure 1.5
shows the same pulse following propagation in the normal dispersion regime.
The pulse broadening experienced in both cases is the same, but the sign of the

chirp has been reversed.

If a laser at this wavelength produces up-chirped pulses, that is with red spectral
components at the leading edge of the pulse, the initial effect of GVD will be
to narrow the pulse, retarding the red and advancing the blue. Obviously, in
the long run the pulse will broaden again, as the spectral components move

past each other. This effect can be used deliberately as a pulse compression
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Figure 1.4: Pulse profile .and instantaneous frequency across the pulse after
propagation in the anomalous dispersion regime. Notice the variation in fre-
quency across the pulse, as a result of GVD.
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Figure 1.5: Pulse profile and instantaneous frequency across the pulse after

propagation in the normal dispersion regime. Note that the high-frequency
components are now advanced in time with respect to the low-frequencies
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technique[4], where the initial pulse is passed through a grating to provide a
large chirp, then propagated in fibre of the appropriate sign of dispersion to the

distance where the prechirping is just cancelled by the GVD induced chirp.

The amount of temporal pulse broadening for the case of an unchirped gaussian

pulse is independent of the sign of dispersion, and can be calculated from

2 \2]2
T =Trwam [1 + <z—) J (1.6)
D

where Lp is the dispersion length as given above, and included the dispersion
parameter (s, Trwpa is the initial pulse width at half maximum and 7} the

pulse width after propagating a distance z.

(This relation has been derived assuming a gaussian pulse shape, which is
straightforward to manipulate. The derivation is less simple for the pulse shape
of interest in this work, the hyperbolic secant, but numerical simulations have
shown that in terms of GVD-induced pulse broadening this can be approximated

successfully with a gaussian pulse.)

For optical communications, where data is transmitted as patterns of pulses over
increasingly large distances, GVD is one of the most important limits on data
transmission rates. Some way must be used to keep the pulses clearly separated
from each other, either by keeping them so far apart that pulse broadening does
not cause an overlap, or by some form of reshaping at regular intervals during
propagation. The third alternative is to use nonlinear effects to maintain the
pulse shape. This solution to the problem is the driving force behind the work

presented here.
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1.3 Nonlinear Propagation.

Many systems appear linear at first glance. However, closer examination gener-
ally reveals a change in response when the input values become extreme. Such
nonlinearities can add stability, for example by responding less as the accelerator
pedal is pressed closer to the floor, limiting the increase in engine speed. Al-
ternatively, they may cause the system to become progressively more and more
unstable, for example with increasingly higher rates of interest as the overdraft
becomes larger. The nonlinearity discussed in this work is rather more subtle,
but of very great importance when studying the behaviour of pulses in optical
fibre communications. It was first observed in the mid-60’s, wh‘,en the advent of
powerful lasers made it possible to study the behaviour of high intensity light
beams in various materials, including glass[5], though its origins were not fully

understood for another ten years[6].

To improve the system model, extra terms must be added to the equations
used to describe it, based on what is known of the mechanisms causing the
nonlinearity. Most of the effects discussed here originate from the intensity
dependence of the refractive index of silica. When a high intensity field interacts
with any dielectric the response of the bound electrons becomes anharmonic and

the induced polarisation P is described by:

P = (X(U B4 x® EE+X(3)EEEE+---> (1.7)
where ¢ is the vacuum permittivity and x)(j = 1,2,---) is the jth order
susceptibility.

The effects of first order susceptibility are accounted for by the refractive index
and the attenuation coefficient. Because SiO, is a symmetric molecule, sec-
ond order effects due to x*) do not normally occur in silica fibre, and so this

susceptibility will be ignored for the purposes of this work.
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The third order susceptibility x® produces the lowest order nonlinear effects.
p A

It is related to the refractive index by the equations:
7 (w, |E[?) = n(w) + no| B[ (1.8)

where n(w) is the linear refractive index far from the resonances of the silica,
|E|? is the optical intensity inside the fibre and n, is the nonlinear coefficient,

which is related to x(®) by the relation:

3
— (3)

Ny = 1.9
Only one component x{%), . of the fourth rank tensor is included:in the definition

of ny, since it is assumed that the field is linearly polarised.

Again, to keep the maths as straightforward as possible, assumptions are made
about the importance of the different nonlinear terms, and this model is still
only an approximation of the real systems. The approximations must be made
in terms of the accuracy required and the specific data to be studied, and any

assumptions made in the work described here have been justified in context.

1.3.1 Self-phase Modulation (SPM)

The presence of a very small nonlinear component in the response of silica to
an electro-magnetic field has important consequences as the peak powers in
transmitted pulses are increased. The phases of the higher and lower intensity
parts of the pulse will vary, an effect known as self-phase modulation (SPM),
and for relatively low intensities, the phase change produced can be of a similar
scale to those produced by group velocity dispersion. The two effects com-
bine in a complex manner to produce dramatic differences in pulse propagation

behaviour.
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In the absence of any other pulse shaping effects, self-phase modulation (SPM)
will give rise to an intensity dependent phase shift while leaving the temporal

pulse shape unchanged.

The phase shift means that the instantaneous optical frequency will vary across
the pulse, producing a frequency chirp and a correspondingly broader pulse
spectrum. The magnitude of this phase shift will depend on the distance prop-
agated and the intensity of the optical field, and can be found by observing that

the phase of an optical field changes as:
¢ =TkoL = (n + no| E|?) koL (1.10)

where L is the fibre length and kq = 27/A. The effect of the SPM is seen in the

intensity dependent term

QSNL :n2k0L|E|2 (111)

This result comes from the equations describing propagation in a dielectric
medium, which can in turn be derived from Maxwell’s equations. A good treat-

ment of this derivation can be found in Chapter 2 of [7].

As with dispersive effects, it is useful to define a length scale over which non-

linear effects become important. This distance is defined as
Ly =1/vF (1.12)

where v is the nonlinearity coeflicient defined as

noko

v = (1.13)

Acss
and c is the speed of light and A,y is the effective area of the fibre considered.
Py is the peak power of the incident pulse, in the case of bright pulses, and the

cw level supporting the pulses in the case of dark pulses.
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Lyp corresponds physically to the distance over which the nonlinear phase
changes by one radian, which corresponds approximately to a spectral broad-

ening by a factor of two (depending on pulse shape).

As the input power increases the nonlinear length Ly decreases. This is an
important limit on the maximum propagation distance in a lossy svstem, since
1t means signal power cannot be increased indefinitely to avoid the need for
reamplification. However, as a consequence of the intensity-dependent variation
in frequency across a pulse, it is possible by careful selection of pulse shape to

cancel out the linear variation in frequency caused by group velocity dispersion.

The appropriate pulse pro:ﬁle may be defined by solving the equation describing
propagation in each dispersion regime. This takes the form (;f the Nonlinear
Schroedinger Equation, and the stable pulse solutions are known as solitons.
In the anomalous dispersion regime they take the form of bright pulses with
a shape defined by a hyperbolic secant, and have been the subject of many
studies. In the normal dispersion regime, the soliton solution is a dark pulse,
with the shape of an inverted hyperbolic secant. Bright solitons are discussed
in more detail in section 1.4, and an introduction to dark solitons is given by

chapter 2.

1.3.2 Cross-phase Modulation (XPM).

When studying the propagation of signal pulses at two different wavelengths
there are two effects to take into account. In addition to the intensity depen-
dent phase shift observed due to self phase modulation of a pulse, there is the
phenomenon of cross phase modulation to consider. Although no energy is ex-
changed between pulses, the presence of a high energy pulse in the fibre will
produce small changes in the refractive index which will affect the propagation

of a pulse at a different wavelength.
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A pulse copropagating with another at a different wavelength will see a nonlinear

phase shift;:

dn1 = nakoL (|Ey[* + 2| B ) (1.14)

Comparing this with equation 1.11, it can be seen that the first term shows the
effect of the pulse upon itself, and the second term the response to the presence
of a second field. It is interesting to note that for fields of the same intensity,

the effect of cross phase modulation is twice that of self-phase modulation.

These effects occur only when the pulses overlap in time. Because of the fre-
quency dependence of the group velocity v, (see above) pulses at different fre-
quencies will travel through the fibre with different velocities and will eventually

walk through each other and separate.

The distance over which this walk-through takes place for a pair of sech? pulses

can be calculated as:

Trwam
Ly=—7+" 1.15
1.76|d1| ( )
with d), given by the respective group velocities as:
d12 = ﬁ](/\]) - ﬂ](/\g) = 'U;l(Al) - ’U;l(Ag) (116)

The effect of cross phase modulation has been used to develop many useful

devices, including the Nonlinear Optical Loop Mirror discussed below.

Nonlinear Optical Loop Mirror

The Nonlinear Optical Loop Mirror, or NOLM, was first proposed in 1988 as
a device to perform all-optical switching [8], a key goal in the development
of ultra-high speed optical systems. It consists of a fibre directional coupler

having splitting ratio « : (1 — «) and with its output ports spliced together.
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(see figure 1.6) This forms a very stable interferometric device, since the signals
in each arm propagate in the same piece of fibre and so problems of variations

between lengths etc of the two arms are eliminated.

Polarisation controller

Input field
Reflected field -

Transmitted. field ~

Asymmetric
coupler

Figure 1.6: Schematic representation of a Nonlinear Optical Loop Mirror

With a coupling ratio of 50% no nonlinear behaviour is expected and the device
acts as an all-fibre mirror. To observe a nonlinear response, it is necessary
to introduce some asymmetry into the system, either by changing the coupling
ratio, or by arranging for the signal in each direction to see different gain or loss.
A third method is to include within the loop a signal at a different wavelength,
propagating in one direction only and affecting the copropagating signal via

cross-phase modulation.

For the case of an unbalanced coupler, the response of the NOLM can be anal-
ysed by first examining the case where the pulses do not significantly disperse,
and are shorter than the loop length. It is assumed that there is only one input,

which is divided in some way between the two arms of the coupler.

After propagation round the loop, and returning through the coupler, the final

outputs are described as the reflected and transmitted fields, whose power is
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given, respectively, by:

P, = 2a(1 —-a){l+cos[(1—2a)pnL]} P; (1.17)

Pt - Pi _Pr

where ¢y is the nonlinear phase change due to self-phase modulation.

The power transmitted at each part of the pulse is dependent on the phase shift
acquired by that part of the pulse, which in turn is a function of the power at
that point. For typical 'non-square’ pulses, which do not have a flat profile,
switching will be incomplete, as different parts of the pulse see different phase

shifts.

We now consider the case of bright soliton propagation in a NOLM[9]. One
property of bright solitons (see Section 1.4) is that the balance between the
two opposing chirps produced by SPM and GVD means they have a flat phase
profile. They will thus switch as a single entity, rather than in parts depending
on power. This feature can be used to remove unwanted radiation between

pulses[10].

Another interesting use of the nonlinear optical loop mirror is for pulse shaping,
using the interaction between the signal in one arm and a copropagating pulse
at a second wavelength to impose phase changes of a specific shape on the

signal. [11] With a high powered copropagating pulse A, of the form
A(t) = U sech(t) (1.18)

then the nonlinear phase change induced on the signal B is given by

, | tanh(t) — tanh(t — AB, L)

#(t) = U A7

(1.19)

where L is the length of fibre over which the interaction takes place, and A,

is the difference between the group velocities at each wavelength, and relates
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to the walk-off length as I, = 1/Af,. It can be seen that by careful control of
the loop length and the selection of the second wavelength a variety of phase
profiles may be imposed on B, and therefore a variety of amplitude profiles

produced at the output of the NOLM.

1.3.3 Four-wave Mixing

Four-wave mixing is a parametric process, known as such because it results from
the light-induced modulation of a medium parameter, in this case refractive
index. It can be understood by considering the third-order polarisation term of

equation 1.7, which causes an induced nonlinear polarisation Py given by:

Py, = eox¥'EEE (1.20)

where E is the electric field and ¢y the vacuum permittivity. If the electric field
is made up of four waves at frequencies w,, wy,w3 and wy, linearly polarised
along the same axis z and propagating in the same direction z, the total field

may be written as:

1 4
E = i‘E Z Ej exp[i(ka - w}'t)] + c.c. (121)

where:

kj :njwj/c (122)

and n; is the refractive index. Substituting equation 1.21 into equation 1.20
allows the expression of the induced nonlinear polarisation as the sum of the

effects of the four waves, as:

1 4
PNL = iE Zp] exp[i(ka - wjt)] + c.c. (123)



Expanding this and solving for P; reveals contributions to the induced nonlinear
polarisation from many different combinations of one or more of the four fields,
including the origin of SPM and XPM discussed in sections 1.3.1 and 1.2.4.
For a given j, P; will be contain a term proportional to E;, which includes
contributions from the other three fields, plus a large number of terms involving
the products of the other three fields only. It is these terms which are responsible

for four-wave mixing.

Each term includes a relative phase between the fourth field, E; and P;, deter-
mined by both the frequencies and wave vectors of all four waves. For significant
four-wave mixing to occur, this phase must be vanishingly small, and so both
the frequencies and wave vectors must be matched, satisfying this condition be-
ing referred to a phase-matching. When this occurs, photons from one or more
waves can be annihilated, and new photons created at different frequencies such
that the net momentum and energy are conserved, as a result of the modulation

of the refractive index by the original waves.

The type of four-wave mixing of the greatest importance in optical fibre occurs
when two photons at w; and w, are annihilated with the simultaneous creation

of new photons at frequencies w3 and wy:

w3 + Wy = Wy + wo (1.24)

with the phase-matching requirement A, = 0 where:

Ak = ky+ks— ki —ky (1.25)

= (naws + nyws — Nw; — Naws) /c (1.26)

This is easy to satisfy if w, = ws, a partially degenerate case where a strong
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pump wave at frequency w; creates sidebands located symmetrically at w; and

w4, with a frequency shift:

Qs =w) — w3 = wyg —wy (1.27)

The sidebands may either be seeded by noise, if only the pump signal is incident
on the fibre, or a signal at w3 or wy may be amplified in this way. This is referred

to as parametric gain.

Phase matching can be achieved experimentally in single mode fibres in a num-
ber of ways, with the parametric gain peaking when the net wavevector mis-

match x = 0. This term is given by:

k= Aky + Akw + Ak (1.28)

where Aky, Akw and Akpyp represnt the mismatch occurring as a result
of material dispersion, waveguide dispersion and nonlinear effects. Approxi-
mate phase-matching can be obtained by reducing the material and nonlinear
contributions, using small frequency shifts and low pump powers. Alterna-
tively, when operating near the zero-dispersion wavelength, Aky nearly cancels
Akp+Akyy, again resulting in near-phase matching. Operating in the anoma-
lous GVD regime is another solution, since Ak,, is the negative and can cancel
with Akw + Akyny. The final experimental solution to satisfying the phase-
matching requirements for four-wave-mixing is to use birefingent fibres. Waves
in such polarisation-sensitive fibres propagating with orthogonal polarisations
have different effective indices, with index difference én. This dominates the
waveguide contribution to the wavevector mismatch. The nonlinear contribu-
tion is also different to the polarisation independent case, and is negligible com-

pared to Aky and Akw. Phase matching occurs when the two terms cancel,
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with the sign of Aky controlled by launching the pump wave polarised either

along the slow or fast axis of the fibre.

1.4 Solitons

1.4.1 The Nonlinear Schroedinger Equation

Various references have already been made in this work to solitons, describing
them as pulses which by a combination of linear and nonlinear effects are able
to propagate unchanged over great distances. This is a fairly: simplistic view,
and to understand some of the complex behaviour which can be observed a
more rigorous mathematical treatment is required. The discussion which follows
highlights the key stages in analysing the propagation of light in nonlinear

materials, and the soliton solutions which emerge from such an analysis.

A model of propagation in optical fibre can be built up by considering the
various responses of the material and field. Having considered loss, dispersion
and nonlinearity separately, the effects of each, and the interactions between
them may be combined in equation 1.29. This describes the propagation of the
slowly-varying envelope A of a pulse in a frame of reference moving at the group

velocity v, of the pulse.

, 0 1. 09%*A 5

where « is the loss coefficient, and + is the nonlinearity coefficient defined by

equation 1.13

In the absence of the loss term —%aA this i1s referred to as the Nonlinear

Schroedinger Equation (NLS). It was shown almost simultaneously by Zakharov
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and Shabat[12], and by Hasegawa and Tappert[13][14] that this equation is inte-
grable, and can be solved exactly using the inverse scattering method, providing
useful insight into the behaviour of high power pulses in optical fibres. Details
of this method are available in many texts, good examples being references [7]

and [15] and so only the results will be discussed here.

It is useful to normalise equation 1.29, by introducing:

A z T
U= s, = —, 7= — 1.30
T T (1.30)
which gives:
OU 10*U B

where P, is the peak power, T, is the width of the incident pulse and the
parameter N is defined by N? = Lp/Lyy. The dispersion length L, was
defined by equation 1.5, and the nonlinear length Ly, by equation 1.12.

There is an infinite variety of soliton forms associated with the general solution
to the nonlinear Schroedinger equation. However, there is set of solutions of

particular importance, those whose form at distance £ = 0 is given by:
u(0,7) = N sech(r) (1.32)

where the soliton order /V is an integer. The power required to launch an N-th

order soliton is N* times that required for the fundamental (N = 1) soliton.

Of principal interest to the communications engineer are the two stable single-
pulse solutions. In the anomalous dispersion regime (8, < 0), the NLS takes

the form :

oU 18U,

and has as one of its solutions the fundamental bright soliton (see figure 1.7):

u(€,t) = sech(r) exp(i£/2) (1.34)
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Figure 1.8: The phase profile of a fundamental bright soliton.
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Figure 1.10: The phase profile of a fundamental dark soliton.
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In the normal dispersion regime, with 5 > 0, the NLS becomes

oU  10°U
= 2T 72 2 =
i5e =392 - NIUFU (1.35)

and the fundamental soliton solution to this form of the nonlinear Schroedinger
equation is the dark soliton, described mathematically bv equation 1.36 and
with amplitude and phase profiles shown in figures 1.9 and 1.10. The asym-
metric phase profile is of particular interest, this feature of dark solitons being
possibly of far more importance in comparison with bright solitons than their

obvious differences in shape.

u(&,t) = tanh(7) exp(i€) : (1.36)

The early work on solitons made no distinction between bright and dark solitons
in terms of how much study each merited, and it was only with the experimental
success with bright solitons beginning in the early 80’s [16] that the main focus

shifted towards the bright solution.

The soliton period.

Observing the propagation of higher order bright solitons it is possible to iden-
tify a periodicity in both the spectral and temporal domains. This feature of
bright soliton propagation has been used to define a characteristic length scale,
known as the soliton period. In normalised units, the soliton period is defined

as:

20 :LD7T/2 (137)

Over this distance the bright soliton phase rotates by n/4. Although the dis-

tance over which the phase makes a complete cycle might be considered a more
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satisfactory characteristic length scale, the obvious periodicity exhibited by
higher order bright solitons over the shorter distance has meant that the former

definition has been retained. Figure 1.12 shows the evolution of a third order

bright soliton over two soliton periods.
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Figure 1.11: The temporal evolution of a third order bright soliton.
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Figure 1.12: The spectral evolution of a third order bright soliton.

The distance z; is generally used to permit dimensionless comparisons of be-

haviour at different propagation distances in different systems.
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Comparing equations 1.34 and 1.36 it can be seen that the period associated
with the dark soliton as defined in this manner is one half of the bright soliton
period for the same dispersion and pulse width. Since higher order dark solitons
do not undergo periodic reshaping but divide into a number of grey solitons, the
concept of a period per se has no meaning, but for the purposes of comparison
the dark soliton period in this work is taken to be the distance over which the

background phase rotates by 7 /4.

The dark soliton solution will be discussed extensively elsewhere in this work,
but it is worth first reviewing some features of bright solitons, to allow compar-
isons between their more familiar form and responses in different circumstances,

and the behaviour of dark solitons.

1.4.2 Bright Soliton Characteristics

Solitons have many potentially useful applications in telecommunications, both
in terms of data transmission and data processing, an area of increasing im-
portance as networks become more intelligent. Their ability to reform after
perturbation, the ease with which they can be generated, and their particle-like
response to many situations has led to them being described a ‘natural data

bits’.

To understand the ease of generation, it is useful to consider the propagation of a
pulse with slightly higher power than would be appropriate for a bright soliton of
that width. The extra power will mean the pulse sees a larger nonlinear change
in refractive index, producing spectral broadening. Dispersive effects will then
compress this chirped pulse, as the different frequency spectral components have
different velocities with respect to the central frequency. The pulse will narrow,
and ultimately, by a combination of reshaping and energy shedding, form a

soliton. This means that any laser producing arbitrary pulses of approximately
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the right form may be used as a source of bright solitons. It also means that
bright solitons are very stable with respect to small perturbations, for example

noise and loss.

The effects of loss can be included in the inverse scattering solution of the
NLS by treating it as a weak perturbation. For low losses, the pulse width
increases as the peak power drops, maintaining a constant width*height product
and the evolution is described as adiabatic. However, this assumption only
holds for as long as the soliton period (which increases with increasing pulse
width) is substantially shorter than the loss length. As this assumption becomes
invalid, the evolution ceases to be adiabatic and the soliton is destroyed. With
the advent of optical amplifiers (see section 1.2.2) the periodic'amplification of
solitons has become a practical possibility, and the response of solitons to such

variation in power has been studied in some detail.

Average Soliton Model

The soliton’s ability to reform following loss and amplification depends to some
extent on the distance over which such adaptation takes place. For amplifier
spacings very much less than the soliton period z, it is possible to replace the
balance between linear and nonlinear effects at each stage of propagation by a
balance between the average phase changes induced by each type of behaviour.
The pulses are launched with higher power than is required for the the funda-
mental soliton and sees an excess of self-phase modulation during the first part
of propagation, until fibre losses reduce the power levels to the point where
GVD dominates. If the distance between amplifiers is sufficiently short, the
phase shifts induced by each mechanism will be small enough to be balanced
approximately. The approximation becomes invalid as the amplifier separation

increases, the standard ‘safe’ distance is taken to be 8zy/10.



The situation has been analysed by several different groups, see for examples
references [17] and [18]. It is possible to calculate what launch power is required
to ensure that the average power over a span is sufficient to balance the average

linear phase change over the distance. This is given by Blow and Doran[17] as:

1o

(1.38)

A:[ 2I'z, ]

1 — e——2I‘zﬂ
where A is the initial amplitude of the soliton, I' is the system loss and z, is

the distance between amplifiers normalised to the soliton period.

The equations hold for both bright and dark solitons. However, because the
dark soliton period is half that for the equivalent bright soliton, to remain
within the limitations of accuracy of the average soliton modél a dark soliton
system must have amplifiers spaced at half the distance required for a bright
soliton transmission system. This is a serious disadvantage from the engineering

point of view.

Bright Soliton Interactions

It is essential for accurate data transmission that the bits are independent, that
is that the presence or absence of neighbouring bits has no effect on pulse shape
and position. A great deal of work has been done on interactions between bright

solitons, of which a few key points will be summarised here.

It has been shown (see for example [19],[20]) that interactions between bright
solitons depend not only upon separation but relative phase and amplitude.
Solitons of the same phase, amplitude and which are less than three pulse
widths apart will periodically collapse together and then separate again. This
is clearly undesirable for communications. However, even a slight variation in
relative phase or amplitude will reduce the attraction between the pulses, and

can with careful design cause the pulses to repel one another instead.
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Figure 1.13: The collision of two bright solitons propagating at different wave-
lengths

If two bright pulses of different wavelength copropagate in a ﬁBre, it is possible
to observe soliton collisions. As mentioned earlier, in many cases solitons act
as single entities and the collision of two bright solitons of different wavelength
(and hence velocity) is an excellent example of this. as shown in figure 1.13 This
figure shows the behaviour of two bright solitons moving with different speeds
with respect to the background. As they approach the collision point, the two
fields overlap, to form a single bright pulse. Beyond collision, they separate
completely from each other and continue to propagate as before. There is no
change in pulse shape, the only effect of the collision being to slightly change
the position of each pulse in time. The ability of bright solitons of different
wavelengths to copropagate without interference means that the data carrying
capacity of optical fibres can be increased many-fold using the technique of

wavelength division multiplexing.

The main constraints when designing a bright soliton transmission system are
then to ensure the pulses are sufficiently far apart that they do not interact, and
that the spacing between amplifiers is significantly less than the soliton period.
There are other considerations which must be taken into account, such as noise

induced timing jitter, but these will be discussed in later chapters.
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1.5 Numerical simulation techniques.

Although scattering theory can provide a useful insight into pulse behaviour in
systems which are not greatly perturbed, many realistic situations cannot be
studied in this way and can be better approached by using numerical techniques
to simulate different aspects of propagation. Various algorithms are available
to allow detailed analysis of complex systems, each with different advantages
and disadvantages. The simulations described in this study all use the Split-
step Fourier Method as the basis for the models used, partly because as a
well-tried and tested technique the results produced can be considered reliable
from a numerical point of‘view, and partly because the the use, of finite Fourier
transforms, which can make very efficient use of machine resources, means that

running the model is reasonably fast.

The basic split-step Fourier method makes use of the fact that, providing the
steps taken are sufficiently small, propagation over a short distance can be

described in terms of a separate linear and nonlinear component:

0A P

— =(D+ N)A 1.39

— = (D+ ) (1:39)
D is a differential operator which includes the effects of dispersion and ab-
sorption in a linear medium, and N describes the nonlinear responses of the

medium.

Simulation takes place in two steps, over a short distance h. In the first step, the
effects of the nonlinear operator are determined ignoring any linear effects. This
exclusion means the resulting equation may be solved very simply in the time
domain. In the second step, only linear effects are considered, transforming the
field into the Fourier domain to allow for fast calculation of the various partial
derivatives involved. Again, the exclusion allows the remaining terms to be

dealt with very efficiently, once the transformation into the frequency domain
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has been made.

The algorithm used for the model in this work shows increased accuracy com-
pared to the simple method described above, by including the effects of nonlin-
earity midway through the propagation step, and by using multiple small steps

within the given interval.

The step size required to ensure that observed behaviour is real and not a nu-
merical artifact may be precalculated for straightforwards bright soliton propa-
gation. For more complicated initial conditions, or for dark soliton propagations
a sultable step size was determined by convergence tests for a given set of sim-
ulations. Too large a step size will result in effects such as artificial (numerical)

generation of spectral sidebands.

The bulk of the additional code needed to perform the simulations described
here was written as required, or adapted from other work. Important features

will be discussed elsewhere, as appropriate.
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Chapter 2

Dark Solitons

This chapter provides an introduction to the general properties of dark solitons,
and in particular examines those features of their behaviour which affect their
suitability for use as data carriers. It outlines their advantages, but also possible
problems which must be solved satisfactorily before dark soliton communication

systems could become commonplace.

Although the existence of dark optical solitons was discussed when bright soli-
tons were first brought to general attention, the difficulty in generating them
reliably and the automatic assumption that dark solitons will require excessively
high powers compared to bright has meant that they have been neglected to
some extent and are only now starting to arouse interest as a possible medium

for communications (see for example [21], [22]).

Improvements in both analytical and experimental techniques have meant that
the study of dark solitons is much more straightforward than was true previ-
ously, and recent results (for example [23],[24] and [25]) are starting to suggest
that they may be more stable than bright solitons in several very important

situations. Because of this improved stability, the mark-space ratio for dark
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solitons does not need to be so high as in the dark soliton case, with a cor-
responding decrease in the power needed to support them. The criticism of
excessive power requirements can thus be easily refuted, and section 2.5 in this
chapter uses typical values for communication system requirements to illustrate

this.

Many of the optical fibre systems currently installed around the world use fibre
which has been designed for transmission in the normal dispersion regime. It
1s possible to convert these to create an ‘average’ anomalous dispersion, by
inserting short lengths of fibre with very high anomalous dispersion at regular
intervals in the transmission line, allowing bright solitons to be supported[26].
This could permit a large increase in transmission rate, and/or signal-to-noise

ratio of the communications link, thanks to the stability of the soliton solution.

However, if reliable techniques can be found for generating, modulating and
controlling dark solitons, implementing a dark soliton solution would be a much
more satisfactory method for improving the data link. Figure 2.1 shows an
example of a modulated 10Gbit/s train of dark solitons, containing a byte of

data, plus an even parity bit.

A fourth reason for the increase in the attention being paid to dark solitons is
the successful development of in-fibre amplifiers for signals below and around
1.3pum, the zero dispersion point in standard fibre. The benefits or otherwise of
in-fibre amplification over detection and retransmission, especially with respect
to solitons, were discussed briefly in section 1.2.2, and can be summarised as
increasing the system flexibility with regard to data-rate and signal wavelengths,
but requiring greater control of pulse shape and position. The development
of the erbium-doped fibre amplifiers at 1.5um was one of the key features in
the rapid rise of bright solitons, and the existence of amplifiers suitable for

dark soliton transmission systems is an additional reason to consider the soliton
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Figure 2.1: The data pattern 11010011, plus an even parity bit, imposed on a
10Gbit /s train of dark solitons.

solution in the normal dispersion regime more carefully.

2.1 Mathematical description of dark solitons.

The dark soliton is often described as an intensity dip in a bright background
possessing, in addition to a tanh® intensity profile, an asymmetric phase shift
centred about the lowest point on the pulse. It is the soliton solution to the non-

linear Schroedinger equation in optical fibres in the normal dispersion regime.

The equation for the black or fundamental dark soliton given in section 1.4 can
be written more intuitively by switching to the notation of Tomlinson et al and

then takes the form:

Aolt —im|Ag|?2
u(z,t) = Ap tanh (1—2%}—) exp (—%—%) (2.1)

The parameter tg is the (arbitrary) time normalisation and zy a normalising

length scale given by



20 = Lpm/4 (2.2)
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Figure 2.2: The temporal profile of a fundamental dark soliton.
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Figure 2.3: The phase profile of a fundamental dark soliton.
(Note that this definition of z; gives a length which is half that produced by

the definition of the bright soliton period, given in section 1.4. It corresponds

to the distance over which the overall phase of the dark soliton rotates by /4,



in the same way that z; is defined for bright solitons. This confusion in the
literature, owing to the difference in the rate of phase rotation for bright and
dark solitons is one of the reasons why most of the original work in this thesis

uses absolute length scales for comparison purposes. )

An Important feature to note from the equations is the phase profile of the
black soliton which has an instantaneous switch of 7 radians at time t = t,.
This is in contrast to bright solitons, which have a uniform phase profile across
the entire pulse. Figure 2.2 shows the temporal profile of an 80ps black soliton,
and figure 2.3 the corresponding phase profile, showing the = phase shift at the

centre of the pulse.

Unlike bright solitons, dark soliton solutions exist for pulses which have a depth
less than unity; the grey solitons. The general grey soliton solution to the NLS

1s:

1\ 11/2 1 A, 2,
u(z,t') = % {1 — B%sech? (Et%ll—t—)} exp {iqﬁ <1At(())lt ) -1 2]22lz0 } (2.3)

. —Btanh(¢)
$(€) = sin [(I—BZSQChQ(g))l/Q] (2.4)
ot 7w, (1-BY)Y?;

PR L

where u is the complex amplitude envelope, z the distance of propagation and

t' the retarded time travelling along with the pulse.

Equation 2.3 has been given in this form to draw attention to the amplitude
and phase profile of the dark soliton, in particular in terms of the greyness
parameter B. For the case where |B| = 1, equation 2.3 reduces to equation 2.1.
For cases where |B| < 1 the contrast ratio of the soliton with respect to the
background is determined by |B|. The relationship between the parameters A

and B can be seen in figure 2.4.
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Figure 2.4: The relationship between the parameters A and B for grey solitons.

The continually changing phase across grey solitons means they have an effective
frequency shift and therefore a velocity which is different to that of the support-
ing cw signal, and will either lag or advance with respect to the background,
depending on the sign of B. Since to maintain phase continuity dark solitons
must be formed in pairs with opposite phase shift, a train of grey solitons will
in fact consist of pairs of pulses moving apart. In standard communication
systems, receivers rely on finding pulses within a given time window and will
treat the absence of a pulse as data in its own right. Grey solitons therefore
present a special position control problem, which is discussed more completely

in Chapter 6.



2.2 Fundamental, lower and higher order dark

solitons.

One of the more important differences between bright and dark solitons is in
the evolution of arbitrary input pulses with parameters corresponding to soli-
ton number N # 1 (see section 1.4). Recall that for bright solitons, if the
initial value for the soliton number N is less than /2 times that required for
a fundamental (V = 1) bright soliton the pulse will collapse. If the pulses are
launched with sufficient energy that N+« where |a| < 1/2 and N is an integer,
the pulse will evolve into :a nonlinear superposition of NV solitgns, which move
together in an oscillatory manner, with an overall profile whi‘ch repeats itself

over each soliton period[27].

The behaviour of dark pulses is different in both cases to that of bright pulses,
and, in addition to the situations when N is greater than or less than unity, the
presence or otherwise of an appropriate phase profile will have an important

effect on pulse evolution.

We consider first the case of an odd dark pulse (ie a pulse with an asymmet-
ric phase profile) of arbitrary width. When launched into fibre it has been
shown[23] that it will evolve non-adiabatically into a dark soliton having the
same amplitude (depth) and speed as the input pulse, but a different pulse
width. Excess energy is shed in the form of a number of secondary solitons,
generated with smaller amplitude and larger pulse widths. For example, for an
input pulse launched with initial power N — a where 0 < a < 1 is an arbitrary
number, then in addition to the primary soliton, 2(N — 1) secondary solitons

will form, with increasing shallowness.

For the case of even dark pulses, it was shown in 1989 by Gredeskul et al [28], [29]

that an arbitrary small dark pulse will evolve into a pair of grey solitons with
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equal amplitudes and opposite velocities (see for example figure 2.6) which
shows the evolution of an even pulse with the same amplitude profile as the dark
soliton shown in figure 2.8. The secondary pulses, despite not being true solitons
in the mathematical sense, preserve soliton properties during propagation and

interaction, as demonstrated by Diankov et al in 1995[30].

This is clearly different to the bright soliton case, where a pulse must have a
normalised area within its envelope of greater than 7/2 for a bright soliton to
form. Bright soliton formation is then a threshold phenomena[31], whereas the

creation of dark solitons is not.

It was shown in the same "papers that for a box-like pulse described by:

uget® lt| > T i
u(t,0) = . o (2.5)
upe'™ —uy = we' |t < T

where u; is a complex constant |u;| < wug, then in a general case a number

of dark soliton pairs will form with amplitudes \/ué — A2 \/ué — A3, ...and
velocities £2A;, £2X,, ... where A}, Ay, ...are real positive solutions to the
system. In particular, for |4| < ug and uT > 1 the number of dark soliton

pairs can be estimated as 2u¢T /7.

This result was demonstrated in the same year by Zhao and Bourkhoff [23], who
also showed that dark solitons were more stable than nonlinear bright pulses
with respect to such effects as loss and noise. This was an important result,

and will be returned to later (see section 2.5).

If a dark soliton is launched with power corresponding to N > 1 with N in-
teger (see section 1.4.2) then instead of undergoing a periodic evolution in the
time and frequency domains it will evolve to produce a black soliton plus pairs
of grey solitons with equal amplitudes and equal and opposite velocities. Fig-

ure 2.8 shows the temporal and spectral evolution of a ‘third order’ dark soliton.
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Comparing this with the bright soliton case (see figure 1.12) on page 43 the dif-
ferences in behaviour, and the absence of any periodicity in the dark soliton
evolution are very clear.
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Figure 2.7: The temporal evolution of a third order dark soliton.
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Figure 2.8: The profile following propagation.

As was shown by [32], and illustrated in figure 2.8, dark solitons do not form
multiple bound states, and the interactions between them are therefore much
simpler to understand than in the bright soliton case. However, this feature of

high power propagation in the normal dispersion regime means that the gen-



eration of dark solitons is less straightforward, since any extra energy may be
shed into the background not as noise but as shallow grey solitons. These move
rapidly with respect to the black solitons and would cause timing errors during
collisions with the data carrying pulses. Any successful generation technique
would have to suppress the formation of grey solitons in some way, either by
ensuring that no energy is shed, or by using some sort of amplitude sensitive
modulation. An amplifier which saturated at power levels close to the back-
ground level, effectively removing any fluctuations, and which supressed the
signal at low power levels would be preferred for this, simultaneously smooth-

ing the background and ensuring that the black soliton remained black.

2.3 Propagation Properties

The dark soliton solution to the NLS requires that the background which sup-
ports the soliton is constant to infinity. Much of the mathematical analysis of
the behaviour of dark solitons has been done assuming that this boundary con-
dition is fulfilled, that is, that u — const as ¢ — oo. The work done based on
this assumption provides the basis for the current knowledge of their behaviour

in many situations.

However, an infinite background cannot be realised physically, and is of ques-
tionable value in numerical simulations. It has been necessary then to determine
to what extent the behaviours predicted in the ideal case will be observed for
an odd dark pulse on a bright background pulse with a width of only perhaps
ten times the dark pulse width, and this feature is discussed in this section in

some detail.

The final important information about the propagation properties of dark soli-

tons comes from studying the behaviour of two or more pulses, either of the
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same depth and velocity or not, either black or grey. The work in this area is
by no means complete, partly because of the tremendous complexity involved

once the behaviour of more than two pulses is involved.

2.3.1 Adiabatic evolution

In the absence of any perturbations, a dark soliton will propagate unchanged in-
definitely. In any real system, the presence of perturbations cannot be avoided,
and the principle among these is attenuation, discussed at length in Chap-
ter 1.2.1. In the presence of a gradual loss (or gain) the dark pulse will evolve to
maintain its soliton structure[33]. A common feature of all solitons described by
equation 2.3 is that they have normalised peak intensity (or depth) of I, = A?
and a pulse width at half maximum depth of Trwgay = 1.76/A. Rearranging
these relations gives I,Tfy gy = 1.762, ie the product of peak depth and the

suqgre of the full pulse width at half depth is a constant for all solitons.

This constancy can be used to give a clear indication of soliton-like behaviour,
and was used by Tomlinson et alin 1989 to study the behaviour of dark solitons
propagating on a finite-width background pulse[34]. Their simulations showed
that the J,T4y 4 product does not remain constant in this case, but oscillates
about the constant value of 1.76. This type of oscillatory behaviour has been
observed for bright solitons propagating in the presence of a small non-soliton

background and was assumed to be a result of interference with the background.

It was shown by Giannini in 1990[35] and by Lisak[33] in 1991, using different
techniques, that the adiabatic broadening of dark solitons in the presence of
gradual loss was at half the rate of that of the equivalent bright soliton. This
may be explained physically by recalling that the background which supports
the soliton will also be experiencing loss, and so the depth of the soliton will be

reduced as a result of loss to the background, requiring less adaptation of pulse
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width to maintain the product 1,72y 5, constant. A slower rate of spread
1s always beneficial for data transmission, and these results were extra proof
that dark solitons had advantages compared to the bright solitons, so justifying

further study.

2.3.2 The effect of stimulated Raman scattering on pulse

stability.

Intra-pulse stimulated Raman scattering (ISRS) originates from the non-instant-
aneous, delayed response of the fibre nonlinearity[36]. Many theoretical studies
have been carried out ignoring this effect, assuming an instantaneous nonlin-
earity, but any real systems with very short pulses (<1ps) will experience it to
some extent. An early piece of experimental work[37] on the effect of ISRS on
narrow dark solitons showed that it induced both a temporal and spectral shift

on the dark soliton at a rate which is half that for equivalent bright solitons.

Prompted by these results, a series of simulations were carried out[38][22], con-
firming the factor of two in the shift rate. However, this temporal and spec-
tral shift is far more destructive in the case of dark solitons, whose velocity
and depth are inextricably linked, and the pulses become progressively shal-
lower, eventually disappearing completely. These observations have now been
explained analytically, also demonstrating the dependence of the effects on the
sign of the soliton’s velocity[39]. They showed that a dark grey soliton with
initially negative velocity will become darker and pass through a point of zero
intensity at the centre before becoming greyer and ultimately being destroyed.

Grey solitons with positive velocity do not pass through this stage.
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2.3.3 Interactions between dark solitons

The mutual attraction of neighbouring bright solitons is a limiting factor in the
maximum data-rates which can be implemented in a soliton transmission sys-
tem. It is caused by the effect of the nonlinearity which supports the soliton (see
section 1.4.2 for more detail) and decreases exponentially with separation[40]).
A ‘safe’ separation of ten pulse-widths was defined as the minimum required if
interactions were to be avoided. The separation ¢ (in units of pulse width) at

any distance £ was shown to be given by

exp[2(q — q0)] = 1/2 {1 + cos|4€ exp(—qo)]} : (2.6)

It was shown by Zhao and Bourkoff[23] in 1989 that the interaction between
neighbouring dark solitons is much less than that experienced by their bright
counterparts. They used numerical techniques to deduce an empirical expression
for the separation of two dark solitons as a function of initial separation gy and

travelling distance £, thus:

exp(2(¢ — go)] = 1/2{1 + exp[4€ exp(—2¢o)}} (2.7)

Comparing equation 2.7 with equation 2.6 there are several important differ-
ences. The interaction force between neighbouring dark solitons is always re-
pulsive, and the separation between them increases monotonically, as opposed
to the periodic variation in the separation of bright solitons. The force between
the two solitons decreases with initial separation twice as fast as is the case with
bright solitons, which has important implications for the minimum safe spacing
between data bits. Zhao and Bourkoff conclude that an initial separation of only
three times the pulse width would be sufficient to prevent excessive interaction

between neighbouring pulses, a very significant decrease from the recommended
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ten bright pulse widths. The importance of this result is discussed in section 2.5.

2.3.4 Collisions of dark solitons

One final response of dark solitons needs to be considered here, their behaviour
during collision. The collision of bright solitons was discussed previously (see
section 1.4.2), and cited as an example of the particle-like behaviour of solitons.
In the bright soliton case it is possible to observe collisions by launching solitons
at different wavelengths, the difference in group velocities of the two wavelength
producing a difference in speed. To observe dark soliton collisions it is necessary
instead to launch either two grey solitons of equal depth but opposite phase

shift, or two solitons of different depth, and hence different velocity.

Figure 2.11 shows a collision between grey solitons. The two odd pulses ap-
proach each other, combine to form a single, even pulse and then separate
again, each moving with the same velocity as it had prior to collision. (If two
pulses of different amplitudes are used it can be seen that the pulses do pass

through each other, and are not merely being reflected.)
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Figure 2.9: The collision of two 75% dark solitons.

When very dark (n > 90%) solitons collide, as in figure 2.14 they cannot combine
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Figure 2.10: The profile of the two pulses at various points up to collision.
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Figure 2.11: The position of the centre of the pulses during collision.



to form a single even pulse as above, but instead approach until each has a zero
intensity minimum, and copropagate in this way. The phase profile continues to
evolve, and for pulses of equal depth will flatten completely before reforming.
Following this, the two dark solitons will begin to move apart again, having
exchanged positions. Once again, the soliton with positive velocity with respect
to the background will have been advanced slightly in time, while the soliton

with negative velocity will have been retarded a little.
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Figure 2.12: The collision of two 92.5% dark solitons.

The first work done on dark soliton collisions was a thorough study of the
behaviour under a variety of different conditions, carried out by R. N. Thurston
and A. M. Weiner in 1991[41]. They demonstrated analytically that in an
1deal dark soliton collision the two solitons pass through each other unchanged
except for a temporal shift, which causes the faster soliton to arrive earlier and
the slower to arrive later than would have been expected had there been no
collision. Numerical simulations were carried out to confirm this, and to allow

detailed observation of the pulses during collision.

They developed the work to study the effects of propagation on a finite-width
background, and in the presence of the Raman effect. The form of the back-

ground pulse meant that the parameters A and B which define the grey soliton
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Figure 2.13: The profile of the two pulses at various points up to collision.
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400.0 - ; ' T T I " ‘
200.0
/U? \/
Z
® 0.0 + 4
E
= s _
-200.0
-400.0 —
0.0 2.0 4.0 6.0 8.0 10.0

Distance (arbitrary units)
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sion.
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could not be properly determined, and in conjunction with possible changes to
A and B due to the broadening of the background pulse they found that the
collision point could not be predicted from a knowledge of the ideal case. They
found that the effect of Raman was to slow slightly the faster grey soliton, and
slightly increase the speed of the slower. Their numerical results agreed very

well with the earlier theoretical predictions of Kivshar[42].

2.4 Generation techniques.

The presence of the phasé shift associated with dark solitons,.and the general
technical difficulty of creating dark pulses has meant that experimental tech-
niques for the generation of dark solitons have been developed much more slowly
than the equivalent bright soliton methods, being of necessity more complex.
There are a variety of dark soliton generation techniques, which may be divided
loosely into two groups, those which produce one or more solitons on a finite-
width background pulse, and those which produce trains of dark solitons on

what is effectively an infinite background.

Production of dark solitons on a finite background is more simple from an
experimental point of view, and has been demonstrated successfully in a number
of ways, but is of less use from a communications point of view, where there is

a requirement for continuous data transmission.

2.4.1 Generation on bright pulse backgrounds.

Many of the early dark soliton generation techniques concentrated on manipu-
lating the phase and amplitude profiles of bright pulses. In 1985, J. P. Heritage

et al[43] showed that it was possible to manipulate the phase and amplitude
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profiles of ultrashort (picosecond and sub-picosecond) bright pulses to produce
any arbitrary pulse shape. Pulses from a suitable source were coupled into
fibre and propagated, becoming chirped due to the effects of SPM and GVD
(see chapter 1). The chirped pulse was compressed using a single pass grating
pair [4] to produce a temporally short pulse with spectral components spread
spatially in a fan shaped beam of about 7mm. A spectral window was used to
remove surplus energy in the wings of the compressed pulse, which was then
passed through a spatial amplitude and phase filter. The modulated signal was

passed back through the grating pair, recompressing it prior to observation,

The amplitude mask used:consisted of a periodic array of opaque strips. On its
own, this resulted in a peaked structure, with the number of pea"ks related to the
width of the spectral window. By placing a thin, optically transparent film in
one half of the spectrum adjacent to the mask, and centering them with respect
to the dispersed spectrum, they were able to produce a phase shift between each

of the amplitude peaks, generating a sequence of regularly spaced odd pulses.

A second technique for producing odd dark pulses from bright pulses was demon-
strated in 1987 by Emplit et al[44]. This method also used a plate with step
variation in optical index to impose a phase shift on the bright pulse, spread-
ing the pulse initially using a system of lenses. The phase modulated pulse was
then reflected off a grating and focussed down onto a mirror, before being passed
through a slit. The resulting odd dark pulse was propagated over a distance
of 52m and the output profile observed at different initial power levels. For
input powers close to those predicted for dark soliton formation, distortionless
propagation was observed, but the total propagation distance was less than one
soliton period and so this could not be taken as absolute confirmation of soliton

generation.

Krokel et al [45] were the first group to claim to have generated dark solitons,
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using amplitude modulation techniques to create an even hole in a bright pulse,
which was then propagated for 10m before observing any reshaping effects.
At low powers, the dark pulse broadened considerably and a ringing structure
developed in the tails of the bright pulse. As the power was increased, the dark
pulse was seen to split in two, with the regular modulation being forced out
from the centre towards the wings. Comparisons with numerical results showed

very good similarity, confirming the presence of dark solitons.

Other techniques exist, notably Weiner et al [46], Emplit et al [47], and Rothen-
berg et al [48], all bar the last using some form of imposed pulse shaping. The

method used by Rothenberg is discussed in more detail in Chapter 3.

All the experiments described so far produce one or more odd' dark pulses, on
a finite width bright pulse. However, many of the results were considered ques-
tionable, since in the absence of an infinite background the pulses could not
be properly classed as dark solitons. Tomlinson [34] et al showed by numerical
simulation that the pulses formed exhibit very stable soliton behaviour even in
the presence of a very rapidly changing background. An analytical proof of this
result was provided by Kivshar and Yang in 1994 [49], showing that the com-
bined effects of background decay and ‘internal’ soliton dynamics compensated
each other to a large extent, resulting in behaviour comparable to that of a
dark soliton propagating on an infinite background. Whether such pulses were

of any practical use was a different question entirely.

2.4.2 Continuous Trains

Various schemes for producing the more useful continuous trains of dark solitons
were proposed during the late 80’s and early 90s, the first of these being Di-
anov et al in 1989 [50]. The method they proposed involved complex apparatus

and experimental process to produce dark solitons via adiabatic amplification
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of a periodically modulated signal. It has not, to the authors knowledge, been
demonstrated in practice. A second proposal came from Zhao and Bourkoff [51]
in 1990 who suggested using waveguide electro-optic modulators to simultane-
ously manipulate the phase and amplitude of a cw signal. A waveguide Mach-
Zender interferometer is driven with square pulses, each of which produces a

dark soliton at its leading and at its trailing edge.

One technique proposed by Kivshar in 1990 [52] was to generate dark solitons
from phase steps imposed on a bright background. The mathematical analysis
showed that in the presence of an appropriate phase profile a black or grey
soliton would form, depending on the depth of the phase shift. However, sim-
ulations have shown that the radiation produced as a by-product of the dark
soliton generation is likely to render the technique of limited use, unless some
method can be found to control the bright background independently of the

soliton.

Another proposed technique developed one of the finite background schemes,
applying a spatial amplitude and phase mask to a spectrally dispersed train
of bright pulses[53]. The source is chosen such that the maximum of its gain
curve is located centrally between two of its longitudinal modes. Assuming the
system design is such that the two modes are spatially separate in the Fourier

plane, it is possible to filter them independently.

The first successful experimental generation of a CW train of dark solitons was
demonstrated by Richardson et al[54] in 1994. The solitons were produced via
nonlinear conversion of a high-intensity beat signal, generated by combining cw
light from two single frequency lasers. The resulting periodically modulated
signal was input to a length of fibre with slowly decreasing normal dispersion,
producing at the output, when the signal power was sufficient, a train of high-

frequency dark solitons. (This was similar to the scheme proposed in 1989 by
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Dianov et al.) If a fibre with constant dispersion was substituted, the resulting
pulse trains were not stable, but evolved and decaved periodically with propa-
gation. The resulting pulses were propagated for two soliton periods and were
shown to be stable over this length scale. However, the problem of modulating

the train remained.

The first technique to provide a pseudo-random train of dark solitons, ie a con-
tinuous train of solitons upon which a data pattern of some form has been im-
posed has recently been developed and demonstrated experimentally by Nakazawa
and Suzuki[55]. They have developed the method origianally proposed by Zhao
and Bourkhoff, driving the MZ interferometer with a pseudo-random sequence
of rising and trailing edges, generated by converting NRZ data to RZ data with a
a duty cycle of 1/2. This produces a modulated train of dark solitons and is po-
tentially a suitable source for optical communications. They also demonstrated
propagation over 1.3 soliton periods, and coherent detection of the output pulse

train[56].

2.5 Comparison of power requirements for bright

and dark solitons.

A frequent criticism of dark solitons is that they require far higher powers per
data bit than conventional bright pulse transmission systems, and would there-
fore not be economically viable. However, with the results above, it is possible
to show quite trivially that the reduction in mark:space ratio for dark solitons
compared to bright reduces the dark soliton power requirements to a workable
level. The previously unpublished calculation which follows uses system param-
eters similar to those which would be expected in real systems to illustrate the

point, using dispersion shifted fibre, with a dispersion of +-0.25ps/nm.km at the
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signal wavelength of 1.54m, with a nonlinearity coefficient v of 2W~'km~!.

Mark-space ratios were chosen of 1:7 for bright solitons and 1:4 for dark solitons,
these being considered the minimum for bright solitons and a safe, though not

extreme value for dark solitons.

For a data rate of 10Gbit/s, the pulse separation is 100ps, which implies a bright
pulse width of 12.5ps and a dark pulse width of 20ps. The peak power required

for either a bright of dark fundamental (N=1) soliton is:

_ 16| _ 31115

B 72 B ')’T}%WHM

Py (2.8)

Substituting for the different systems parameters gives a brfght soliton peak
power of 0.8mW, and a dark soliton peak power (effectively the height of the

supporting cw background) of 0.31mW

The average power in a train of bright solitons with peak power P, and FWHM

1.767 is found by integrating over one bit period from -T/2 to T/2.
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which is the average power requirement for a train of bright solitons in the

10Gbit/s transmission system defined above.

The average power in a train of dark solitons with peak power P, and FWHM

1.767 is also found by integrating over one bit period from -T/2 to T/2.

T

. 1 5t
P,,(darksoliton) = ?L; Py tanh® ;dt (2.11)
T
= &/2 <1~sech2£> dt
T J-L T
2T
= (-7
° T
2T
Py (darksol.) = Py (1 - ?r‘) = 0.188mW (2.12)

In this particular case then, the power requirements for dark solitons are actually
lower than for the equivalent bright solitons. Although specific details will
vary from system to system it would be fair to say that were soliton-soliton
interactions the only important effect then dark solitons would compare very

favourably with bright simply on power budget terms.

There is a second important advantage of the dark solitons improved stabil-
ity to interactions. Recall that the soliton period increases with the square of
the pulse-width, and the dark soliton period is half the equivalent bright soli-
ton period. This has serious consequences for dark solitons with those effects
which are dependent on distance propagated relative to the soliton period, and

increasing the soliton period is desirable.

For transmission at the same data rate, with the same soliton period, dark
solitons must have a pulse width of 1.4142*T where T is the full-width at

half maximum of the bright soliton. In the system described above, using a
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bright soliton mark:space ratio of 1:7, the bright pulses had a FWHM of 12.5ps.
A dark soliton with the same period would have a FWHM of 17.7ps, and a
corresponding mark:space ratio of 1:5.6. This is well within the limits required

for propagation without interaction.

These results suggest that the possibility of using dark solitons as information

carriers merits serious investigation.
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Chapter 3

Generation of Quasi-continuous

trains of dark solitons.

Analytical and numerical demonstrations of the potential use or otherwise of
dark solitons are of limited value in real terms if no reliable dark soliton gen-
eration technique exists. This chapter discusses original work done both in
simulation and in the laboratory to produce trains of dark solitons on bright
background pulses. It describes the numerical and experimental studies car-
ried out and the results of attempting to expand the technique to produce true

continuous trains[57], [58].

3.1 Previous generation techniques.

A simple method of generating trains of dark solitons was demonstrated in
1991[48], [59]. The work showed, both numerically and experimentally, that it
was possible to produce pairs of trains of dark solitons on a finite background

by the collision of two bright pulses.
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The two bright pulses were launched into a fibre, with a controllable separation
in time At. Propagating in standard fibre, the pulses experienced the linear
and nonlinear broadening associated with propagation in the normal dispersion
regime, developing a rectangular temporal profile with a varving frequency chirp
across the pulse. This is due to a combination of GVD and SPM, which act
together for positive GVD resulting in very rapid pulse shaping. At some dis-
tance determined by the initial separation the two pulses will have broadened
to the point where they overlap and interfere with each other, resulting in a
single bright pulse with sinusoidally modulated intensity and alternating phase

(see figure 3.1a and b).

With further propagation the action of the nonlinearity causes the modulation
to develop into pulses with characteristics which asymptotically approach those
of fundamental dark solitons, as shown in figure 3.1c and d. As can be seen, this
technique produced trains of dark solitons on a bright background, separated

by a bright central region.

3.2 Numerical analysis of system.

The preliminary studies to be carried out on the generation technique outlined in
section 3.1 were aimed at finding suitable parameters for dark soliton generation
at longer wavelengths, where the fibre loss is lower and propagation may be
observed over greater distances before the effects of loss need to be considered.
Once appropriate values had been defined, it would be possible to generate
trains of dark solitons in the laboratory, concluding the first stage of the work.

The second stage is described in section 3.6.

The selection of suitable pulse powers and separations was done using numerical

techniques to simulate propagation with a wide range of input parameters,
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starting from a pair of bright pulses with characteristics defined by the laser
with which the lab experiments would be carried out, namely pulse widths
of 3ps and peak powers of up to 1kW, at a wavelength of 900nm. It was
necessary to determine how the resulting pulse profile varied with different
nitial conditions, and hence obtain values for suitable power levels and pulse

separations to produce clear trains of dark solitons at high repetition rates.

From the initial numerical work it was possible to draw a number of interesting
conclusions. For the same input power levels, varying the input pulse separa-
tion resulted in a variation in the number and density of dark pulses formed.
Figure 3.2 shows the results for progressively greater pulse separations, to the
point where it was possible to produce an apparently continudus train of dark
solitons across the entire pulse, without the bright central region observed for

smaller initial separations.

Examination of the frequency chirp on the pulses prior to collision for the dif-
ferent input conditions shows that for greater separations, and therefore longer
propagation before collision, the chirp on each pulse is much more linear, and
so the resulting modulation is more regular, and the dark pulses which evolve

from the modulation more evenly spaced.

As the separation distance and hence the time before collision was increased, the
distance remaining for soliton formation was decreased, and so the pulses formed
with a separation of 30ps (figure 3.2d) do not after the total 2km propagation
distance exhibit such a clear profile as the pulses formed by collision between
two initially close bright pulses. Since experimental constraints meant that
2km was the maximum propagation distance physically realisable, limiting the
nonlinear behaviour which could be observed. To overcome this, some other
method was required to increase the effect of the nonlinearity, the most obvious

being to increase the power in the system.
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Figure 3.3: The effect of increasing the peak power of the input bright pulses.
This figures show the profiles after propagating for 2km with an initial pulse
separation of 10ps and pulse peak powers of (a) 10W (b) 20W (c) 40W (d) 60W.

Figure 3.3 shows that for the same pulse separation, an increase in power level
would increase the number of dark pulses produced. This can be explained by
considering the greater chirp across the bright pulses prior to collision, which
results from the increase in the nonlinear contribution to the pulse broadening.
Changing the input power did not affect the positioning of the two trains relative

to the centre of the packet.

By manipulating the separation and peak power of the input pulses it was
possible to simulate the generation of a satisfactorily continuous train of dark

pulses. Figure 3.4 shows the output producing using bright pulses 20ps apart,
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Figure 3.4: A train of quasi-continuous dark solitons.

with initial peak powers of 100W.

3.3 Verification of soliton-like behaviour of gen-

erated pulses.

The next stage of the simulation work was to confirm that the dark pulses pro-
duced were in fact solitons. It is possible to distinguish between dark pulses and
dark solitons in a variety of ways, not least in terms of shape, phase profile and
response to changes in background level. In numerical systems it is relatively
straightforward to observe propagation, and examine the amplitude and phase
profiles of simulated pulses in great detail, and so it was possible to demonstrate

the properties of these dark pulses in some detail.

Firstly, it was confirmed that the pulses had the expected tanh? temporal profile
corresponding to very dark grey solitons and a phase shift across the centre

which deviated only slightly from the instantaneous 7 phase change of the black
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Figure 3.5: The amplitude and phase profiles of the dark solitons nearest the
centre of the pulse. Note the superposition of the phase shift across the bright
background, due to the chirp acquired due to propagation in the normal dis-
persion regime.

soliton, as shown in figure 3.5. The technique did not result in the generation
of black, or 100% solitons. The bright background pulse showed a large linear
chirp, and hence there was a large phase variation across the pulse, upon which
the dark soliton phase profiles were superimposed (see figure 3.6). However, as
was demonstrated by Tomlinson[34] and later proved analytically by Kivshar[24]
the presence of such a large background chirp does not preclude the existence

of dark solitons.

Secondly, the evolution of the pulse width and depth as the background pulse
broadened could be studied. With increasing width, the bright pulse peak power
fell, reducing the power supporting the dark pulses. Although the system’s

loss over the total distance was low (about 3.8dB) the dark pulses effectively
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Figure 3.6: The phase profile of the bright background pulse supporting the
solitons. This corresponds to a very large linear chirp.

experienced quite severe loss owing to this broadening, and so it was possible to
get a clear description of their behaviour. It would be expected that the solitons

would broaden adiabatically to maintain a constant width/depth product.

Software was written to allow the study of the evolution of the width/depth
product during propagation. This showed that those pulses nearest the centre
of the background pulse very rapidly approached an asymptotic dark soliton
solution. Figure 3.7 shows the evolution of this product for four of the solitons

shown in figure 3.4.

The pulses at the edges approach a constant value for this parameter much
more slowly. A possible explanation may be found by considering the strength
of the nonlinearity at different points across the background. Those pulses at
the centre of the packet are supported by a larger background and so see greater
nonlinearity than those at the edges, enabling more rapid evolution towards a

stable soliton solution.
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in the curve are due to numerical limitations in the software used to calculate
pulse width and depth.)

3.4 Experimental confirmation of simulated re-

sults.

Having defined a suitable parameter range by numerical simulation, an ap-
propriate experiment could be devised to test the predictions made, in the

laboratory.

The experimental setup was as shown in figure 3.8. The pulse source used
was a commercial titanium-sapphire laser operating at 900nm and producing
transform limited sech? pulses with FWHM of 2.5ps. The incoming pulses
from the laser were split and recombined, using a retro-reflector on a moving
stage to vary the distance over which each signal travelled before recombination,
and hence the temporal separation between the pulses could be varied for a

range of about 40ps, or up to fifteen times the width of the initial pulses. The
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Figure 3.8: Schematic for the experimental generation of trains of dark solitons

pairs of pulses were then propagated through 1.9km fibre with a dispersion of

100ps/nm.km and the output viewed using autocorrelation techniques.

The fibre used in the experiment was designed to exhibit low loss at short
infra-red wavelengths. The loss at 900nm was 1.9dB/km which corresponds to
a loss length of 2.3km. The predicted pulse width for the narrowest solitons
which could be generated with this equipment was 5ps, giving a soliton period
of 0.294km. This is significantly less than the loss length. This experiment was
the first to demonstrate dark soliton propagation over more than 2.5 soliton

periods.
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Figure 3.9: Predicted (left-hand column) and observed results for the autocor-
relation of the output pulses, for a variety of initial pulse separations.
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By comparing these results with those predicted by the model for autocorre-
lation of trains of dark solitons it was possible to be reasonably certain that
the pulses were being generated as expected, and that the trends predicted
for increasing power and pulse separation were being followed (see figure 3.9).
However, because of the complexity of the pulse profiles it was not possible to

obtain any detailed information regarding soliton depth and spacing.

More useful information on this point was available from the spectra of the
output pulses for different powers and separations. In particular, because of the
linear chirp across the bright background pulse, individual features representing
solitons could be identified, and the increase and decrease in the number of dark
pulses produced could be observed by changing the delay between the bright

pulses.

3.5 Resolution of pulse profiles using a streak

calnera.

The limitations of autocorrelation as a means for studying the profile of dark
solitons are clear from the above results, and a further series of experiments were
carried out by John Williams at the Université Libre de Bruxelles in collabo-
ration with Philippe Emplit. The purpose of these experiments was to observe
the generated pulse profiles using a streak camera to give far more detailed
information about pulse shape, providing a resolution of down to 10ps. The
laser used in this case had an operating wavelength of 850nm, and so the pulses

experienced a dispersion of 150ps/nm.km.

This work also produced results in excellent agreement with the numerical sim-

ulations, with appropriate changes to the system parameters. Trains of dark
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Figure 3.10: Streak camera image. Initial peak pulse power 64W, initial pulse
separation 22ps.

solitons at rates up to 60GHz were observed in this manner, by varying input
powers and pulse separations, confirming the predictions made regarding pulse

shape and variation with input parameters.

Figure 3.10 shows a streak camera image of the pulse profiles with an initial
pulse separation of 22ps. This compared very well with the numerical results
when convolved with the predicted response of the streak camera to a delta

function, suggesting that the dark solitons had a depth of at least 99%.

Figure 3.11 shows the variation in profile, and the corresponding spectra for a

range of initial pulse separations.
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Figure 3.11: Typical sequence of streak camera profiles and corresponding spec-
tra for varying initial pulse separations. Initial pulse peak power 64W.
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3.6 Extension of technique to produce contin-

uous trains.

From the results obtained it can be seen this technique provides a simple method
for generating short trains of dark solitons. The experimental results also show
that the model gives an accurate representation of the real system, and provides
justification for the conclusions of the further numerical work done on this

system, expanding the two-pulse interaction to three and more pulses.

3.6.1 Three Pulse Interactions

Figure 3.12 shows the profile of the background pulse supporting dark solitons
before, during and after the propagation and collision of three bright pulses. As
can be seen, not one but two sets of pulse trains are formed, each centred on

the collision point between two of the three pulses.

It was found that, in general, increasing the number of bright pulses to n pro-
duces a bright background containing n — 1 groups of dark solitons, with veloc-
ities determined by the chirp across their originating pulses prior to collision.
The overall system at any point consisted of a large number of dark solitons, all
with different starting points and velocities, continually colliding with solitons
generated by the interaction between a different pair of neighbouring bright

pulses.

This result meant that the technique could not be used to produce am infinite
stream of evenly-spaced dark solitons, in the same way as an infinite number of

light sources cannot be used to produce uniform illumination.
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3.6.2 Dark soliton collisions

The interaction of three pulses does however provide a useful vehicle for the
observaﬁon of dark soliton collisions. These are of particular interest because
as well as the normal properties of bright solitons during collision, that is that
they pass through each other unchanged, but displaced by a calculable amount
in time, (see section 1.4.2) the behaviour of very dark (as opposed to grey)
solitons during collision is markedly different to what would be observed by
iverting the system and observing bright solitons colliding. This was originally
studied by Thurston and Weiner|[41]), and their work is discussed in more detail

in Chapter 2.3.4.

In the numerical simulations of the interaction of three bright pulses it was
possible to observe a great number of dark soliton collisions, as the solitons
produced between each pair of bright pulses radiated outwards. They are of
particular interest as the solitons observed are typically of different depths and
velocities. Figure 3.13 shows an example of a one such collision, and figure 3.14
the phase profiles at each point. For the case of non-identical dark solitons,
there is no time during collision at which the phase variation across the window
becomes zero. Instead, as each pulse reaches zero intensity at its centre the

associated phase shift is reversed.

The collision of the pulses marked with long and short arrows in figures 3.13
and 3.14 is a particularly good example of this, with the two pulses being caught
in the centre picture during the most interesting phase of collision, where one
of the solitons has achieved zero intensity at the pulse centre, and its phase has

reversed.

The observation of such collisions in simulation provided additional proof that
the dark pulses generated were in fact solitons. However, in view of the fact

that the method could never be used to produce anything other than groups of
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dark solitons on a finite-width background, in addition to the complexity of the
equipment which would be required to interact three or more bright pulses, no

attempt was made to observe this phenomenon experimentally.

3.7 Conclusions

Both numerical and experimental results showed that by interacting two bright
pulses copropagating in fibre, it was possible to generate short trains of dark
solitons. Using numerical simulations to optimise the pulse parameters prior to
beginning the laboratory experiments it was possible to define a useful range
of values to provide a convenient and stable source of packets of dark solitons.
Use of numerically generated results also allowed an in-depth analysis of pulse
shape, phase profile and spectral characteristics during propagation. This data
was used to demonstrate the soliton-like nature of the dark pulses generated.
(see section 1.5). The results were confirmed experimentally (see section 3.4)
and streak camera images showed the production of trains of dark solitons at
repetition rates up to 60GHz, with estimated pulse widths of 5ps for the central

pulses (see section 3.5).

For use in standard communication systems, a source which provides a continu-
ous stream of bits is preferable to a source of short bursts, and the second stage
of the work described here had the aim of expanding the method to produce
such a train. Again, the initial work was done using numerical simulations to
examine the behaviour when three bright pulses were copropagated and allowed
to collide (see section 3.6.1). Because the dark solitons form as a result of the
interaction between the wings of two bright pulses, multi-pulse collisions pro-
duced multiple sources of dark solitons, each group having different velocities

relative to the background. This was therefore not an appropriate method for
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generating continuous trains of dark solitons.

The simulations of three pulse interactions did permit a study of dark soliton
collisions, in particular the case of solitons of different depths and hence different
velocities. This confirmed the soliton-like nature of the dark pulses generated,

and provided a potential way to demonstrate this interesting type of behaviour.
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Chapter 4

Experimental dark pulse

generation.

This chapter describes work to produce a stable and continuous train of dark
solitons in the laboratory using active optical mode-locking within a fibre laser
cavity. The initial work was based upon results of Pataca et al[60], showing the
generation of stable trains of dark pulses,. These results were repeated at longer
wavelengths, and the laser thoroughly characterised. Experimental limitations
meant that it was not possible to propagate the pulses as intended, but there
were sufficient indications from the characterisation work to suggest the pulses
were even pulses, rather than dark solitons. However, the source proved to
be very stable with respect to a large number of perturbations, and could be
of interest from the point of view of dark soliton generation if some external

method of manipulating the phase profile could be identified.
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4.1 Previous work.

It is possible to produce a source of mode-locking for optical pulses by making
use of nonlinear effects such as cross-phase modulation (see section 1.3.2) to
provide either phase or amplitude modulation within a laser cavity. Pataca et al.
showed experimentally in 1995 that by controlling the sign of dispersion inside
the fibre laser they were able to produce either bright or dark pulses. However,
they were not able to show whether the dark pulses produced in this manner
were odd or even pulses, that is whether or not they possessed the characteristic
dark soliton asymmetric phase profile. A simple way of determining this would
be to observe the propagation properties of the pulses formed over a distance

of several soliton periods.

4.1.1 FM mode-locking.

Conventional FM mode-locked lasers use a sinusoidal signal to provide cross-
phase modulation with the signal wavelength. There are two possible solutions
to the equations for this system, one corresponding to each extreme of the phase
modulation. The mode associated with the maximum of the imposed phase
profile is referred to as the positive mode, the negative mode being associated
with the minimum phase modulation. The two modes have opposite chirps,
and so in the presence of a a fixed amount of dispersion only one will be stable,

pulses of the other mode being broadened rather than compressed.

In the work described here, the modulation is not sinusoidal but in the form of
pulses, which impose a positive phase window on the signal wavelength. In the
normal dispersion regime this will stabilise as holes in a ¢cw background, with a

repetition rate equal to that of the modulating source.
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Figure 4.1: The experimental set-up used by Pataca et al to generate continuous
streams of dark pulses.

4.1.2 Previous results.

The experimental configuration used is shown in figure 4.1. Amplification within
the cavity was provided by a length of praseodymium(Pr®*)-doped fluoride fi-
bre, a recent development in all-optical amplifier technology which has a working
range centred about 1.3um The amplifier was excited by a Nd:YAG laser op-
erating at 1.064um. Active optical mode-locking was achieved using a 1.564u
m DFB laser, whose pulses were amplified using erbium-doped fibre to a max-
imum mean power of 30mW. The output coupler M2 took a variety of forms,
as an optically written fibre grating with bandwidth 2.4nm and reflectivity of

approximately 70% and dispersion depending on orientation of +35ps/nm.

Depending on the orientation of the in-fibre grating, Pataca et al were able to
produce trains of either bright or dark pulses, and with pulse widths of between
140 and 220ps obtained by varying the laser wavelength to alter the walk-off

between signal and modulation source.
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Figure 4.2: The basic cavity structure used in this series of experiments.

4.2 Experimental technique for dark pulse gen-

eration.

The experimental setup for this study used a variety of cavity structures and

pulse sources to allow a thorough examination of the pulse generation technique.

Figure 4.2 shows the basic form of the laser. A range of reflectors were used
at the ends of the cavity, to permit changes in system dispersion and operating
wavelength. The reflector R1 was in each case an optically written chirped
in-fibre grating, produced using the technique of dissimilar wavefronts, which
allows for a continuous distribution of chirp across the grating, without steps,
and so permits clear specification of bandwidth and dispersion. The reflector
R2 was, in turn, a 100% mirror butted to the end of the mode-locker section of
the cavity, a loop mirror whose reflectivity could be varied using polarisation
controllers within the loop, and a narrow bandwidth, unchirped in-fibre grating

used to constrain the laser to a single wavelength.
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Amplification in the system was provided by an 8m length of erbium (Er**)-
doped silica fibre, pumped at 980nm by a commercial Titanium-sapphire laser
operating as a source of continuous wave illumination. Total signal power could
be varied by varying the pump power available using a simple polarising beam

cube and half-wave plate arrangement.

The laser was FM-mode-locked initially using 100ps pulses at 1064nm from a
commercial YAG laser with a repetition rate of 76MHz. This was copropagated
with the cw light from the erbium amplifier in a length of standard fibre to
produce modulation of the cw signal via cross-phase modulation. (see section

1.3.2)

In standard fibre the walk-off distance between signals at 1064nm and 1532nm
is very long, over the experimental distances used of 40m and 10m there was
no appreciable walk-off expected. However, because standard fibre is not single
mode at 1064nm it was possible that there was distortion to the signal due to
pulse break-up into higher-order fibre modes. Later experiments used a tunable
source of pulses at around 1560nm with pulses of FWHM 10ps. Because of the
constraints of the couplers used to combine and later separate the signal and
modulating source it was not possible to tune the modulating source over a
wide range. Hence the resulting pulse-width could not be optimised in terms
of walk-off speeds between the two wavelengths, but again there was very little
walk-off predicted over the distances involved, and so this was not seen as a

limiting factor.

To allow the cavity length to be matched exactly with the repetition rate of the
modulating source a rough approximation was made by inserting or removing
fibre from a section between WDM4 and R2. The final adjustment was made

using a fibre stretcher wound with 10m of standard fibre.
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4.3 Experimental Aims

Initially, this experiment was planned to reproduce the previous results at a
wavelength of 1.5um, using erbium doped fibre to provide amplification, rather
than the rare and expensive praseodymium doped fibre used in the previous
work. The second part of the experiment was to propagate the resulting dark
pulses over several soliton periods, to observe their behaviour in fibre as a means
of determining the characteristics of the pulses as either odd or even, and hence
as either soliton or non-soliton pulses. For this stage it would be necessary to
produce pulses with a soliton period considerably shorter than the loss length
of any fibre in which they were to be propagated, so that issues such as periodic

amplification and spontaneous noise could be ignored.

The suitable fibres available for propagation were either 25km of dispersion
shifted fibre with a dispersion of around 1ps/nm.km at 1550nm, or a 1km length
of dispersion flattened fibre with a dispersion of 90ps/nm.km at all wavelengths
around 1550nm. For the first fibre, this meant a maximum pulse width of less
than 5ps would be necessary, and for the second fibre a maximum pulse width
of less than 10ps. In each case, this would provide a propagation distance of

2.5 soliton periods.

If it proved impossible to achieve these pulse-widths, then alternative methods
for determining the characteristics of the dark pulses would be explored. These
would include varying the power, dispersion and wavelengths in the cavity,

observing the effect on pulse formation of changes in each parameter.
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Figure 4.3: The reflection profile of the grating used in the preliminary exper-
iments. (The fine structure in the profile is due to the measurement technique
used, and is not a feature of the grating.)

4.4 Results

4.4.1 Preliminary characterisations.

The preliminary results were taken using 100ps pulses from the YAG to provide
a mode-locking signal. The reflector R1 was an in-fibre grating with transmis-
sion and reflection profiles as shown in figures 4.3 and 4.4. This grating had a
dispersion of approximately +20ps/nm, depending on orientation, with a peak
wavelength centred around the peak of the erbium spectrum. Reflector R2 was
a loop mirror (see section 1.3.2), using 40m of fibre in the first case. This was
biased using polarisation controllers to reflect as much light as possible back into
the cavity. The system as a whole proved to be remarkably stable with respect
to polarisation effects, with very little adjustment being required to optimise

the position of the various controllers.

As can be seen in figures 4.5 and 4.6 the preliminary results showed reasonable
promise. The output of the laser was viewed using a sampling scope, initially

using a signal from the YAG laser as a trigger. The pulses produced had a
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Figure 4.4: The transmission profile of the grating used in the preliminary
experiments. The loss shown at short wavelengths was characteristic of the all
the gratings used, but was not deemed a problem since only the reflected signal
was of interest in this case. '

contrast ratio of about 90%, and were of a good shape but with a full width
at half the maximum depth of 250ps were too broad to be of any practical use.
This pulse-width corresponds to a soliton period of approximately 25000km at
a dispersion of 1ps/nm.km. Also, as figure 4.6 shows, extra pulses could be seen
in between the main peaks. This would be undesirable in a source of pulses for

communications.

The associated spectrum can be seen in figure 4.7. This is time averaged over
ten readings and shows the laser hopping from one wavelength to another. The
standard method for determining the cavity dispersion, by tuning through the
full mode-locking range and observing the shift in signal wavelength could there-
fore not be used, and empirical methods had to be used to obtain an estimate
for the dispersion. Given the very short lengths of fibre used in the cavity, the
principle contribution to this came from the grating, with the standard fibre

and erbium doped fibre adding less than 1ps/nm each to the total.

It was clear that using a 100ps pulse to provide cross-phase modulation for FM

mode-locking would not result in dark pulses which had a pulse width of less
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Figure 4.5: Preliminary results for dark pulse generation technique, showing
main pulse only.

00060 LA T T T ¥ T L T T T T T T T T T T Y
— 0.0050 M
@ i ]
S  0.0040 - _
o - |
s 0.0030 - .
2 0.0020 - |
@] - N
O 0.0010 F _

0_0000”1,“1,,1,,,,,,,,,,,,H,,,‘H,“

30.0 35.0 40.0 45.0 50.0 55.0 60.0

Time (ns)

Figure 4.6: Preliminary results for dark pulse generation technique, showing
two full mode-locking periods
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Figure 4.7: Optical spectrum associated with the pulses shown above, averaged
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than 10ps. However, various other characteristics of the laser could be studied
in this situation, with the advantage that direct measurement of the output
pulse profile was possible. From the calculations above, the required pulse
width for propagation would be approaching or less than the response time of
the detectors available, making accurate characterisation difficult, and so it was
decided to complete the first series of studies based on the YAG mode-locked

system.

Recalling from section 1.3.2 that the phase shift induced on a signal at another

wavelength by a pulse of the form A(t) = Usech(t) is

tanh(t) — tanh(t — AS, L;)

o(t) = U? A%,

(4.1)

it can be seen that by varying the parameters U (the peak power of the mode-
locking pulse) and L; (the copropagation distance between the two signals) it

should be possible to optimise the final pulse shape.

4.4.2 Changing power of mode-locking signal.

Figure 4.8 shows a series of pulse profiles taken with different strength mode-
locking pulses. A low power signal will produce only a small amount of modula-
tion (figure 4.8a), and increasing the power increases the depth of modulation.
However, beyond a certain depth, no further increase is observed, and secondary
modulation of the background develops. The pulses did not become significantly

narrower for any modulator power.

Figure 4.9 shows the pulse profiles in a larger time window, showing the effect
of varying the modulation on the depth of the subsidiary pulses. These may
be observed at all powers, becoming deeper as the main pulses become deeper.

They are not, then, a result of over-modulation.
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Figure 4.10: The pulse profiles produced with interaction lengths of 40m (upper
trace) and 10m (lower trace).

4.4.3 Changing mode-locking distance.

A possible technique for narrowing the dark pulses produced would be to reduce
the interaction length L;, and providing an increase in peak pulse power to
maintain the same total phase change. This should reduce the effects of any
walk-off between the two copropagating signals. However, as mentioned earlier,
the walk-off distance for signals propagating at the two wavelengths used here
1s reasonably large at 150m compared to the 10m and 40m of fibre used in
the experiments and there was no significant decrease in pulse-width between

interaction lengths of 40 and 10m (see figure 4.10).

This method might be expected to work better with a much smaller difference
between the speeds of the two wavelengths, resulting in a walk-off distance sev-
eral orders of magnitude larger than the co-propagation distance, guaranteeing

that the pulse-shaping effects associated with walk-through were not involved.
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This was a second motivation for switching to a different modulation source.

4.4.4 Changing cavity power.

Chapter 2.2 describes the propagation properties of odd dark pulses launched
into fibre in the normal dispersion regime with a background power greater than
that required to support a soliton of the same depth, and of appropriate width.

Recall that this power is given by:
_ |Ba] _ 3.11|5,|
172 VTiwnm

Essentially, a number of sécondary grey solitons will form symmetrically around

P

(4.2)

the primary soliton, with the number determined by the difference between the
power to support one soliton and the power available. The central pulse will
narrow until the ratio between its width and depth corresponds to that of a
soliton. Assuming the dark pulses observed were solitons, any variation in the

cavity power should be reflected in a change in output pulse profile.

There were two methods available to change the power in the laser cavity.
The overall power in the system could be increased by increasing the signal
from the Titanium-sapphire laser pumping the erbium amplifier, or the output
coupler could be replaced by one with a larger coupling ratio, thus increasing
the intensity of light within the cavity itself, at the expense of output power.
Since the output powers available were well in excess of what the the detection

equipment could safely be exposed to, this was not a difficulty.

Figure 4.11 shows the form of the output pulses for a wide range of output
powers (note the scales on the axes differ by an order of magnitude). There
is no significant difference between the four traces, suggesting that the pulse is

not affected by any self-induced nonlinear shaping.

Changing the output coupling ratio was similarly unconstructive, with little
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Figure 4.12: The pulse profiles with output coupler ratios of 90/10 (upper trace)
and 80/20 (lower trace).

difference observable other than in total power output (see figure 4.12).

4.4.5 Laser stability over extended periods of time.

An advantage of fibre lasers over conventional bulk lasers is that the cavity
is entirely enclosed, eliminating problems of dust and humidity, as well as the
accidental misalignment of cavity components. working with the fibre laser
discussed here over a period of months provided ample opportunity to observe

the stability and reliability or otherwise of the cavity.

The only noticeably sensitive feature was the total cavity length (adjustable
using the fibre stretcher located between the gain medium and the mode-locking
section of the laser), which required very slight adjustments over the course of a
day to maintain a symmetrical output pulse profile. This can be accounted for

by the temperature sensitivity of the fibre, the total length change was never
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Figure 4.13: The pulse profiles observed with two different gratings (and hence
different cavity dispersions) used as the end reflector R1.

greater than a few tens of micrometres.

4.4.6 Changing cavity dispersion.

The main contribution to cavity dispersion was due to the fibre grating, and
so by changing the grating it was possible to study the cavity with a range of
different total dispersions. The range over which the system remained mode-
locked was too narrow to allow the cavity dispersion to be calculated directly,
and so the total dispersion with any grating was assumed to be that of the
grating. As discussed earlier the comparitive shortness of the cavity meant that
the contributions to dispersion from the difference fibre elements were less than

Ips/nm in each case.

From equation 4.2 it can be seen that the power required to support a funda-
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mental dark soliton is a function of system dispersion. It would therefore be
expected that soliton formation within the cavity would be affected by a change
in dispersion, with the pulses becoming broader or narrower accordingly. As the
results in figures 4.13 and 4.14 show, this was not the case, once more casting

doubts on the soliton-like nature of the generated pulses.

4.4.7 Changing position of output coupler

The original cavity structure placed the output coupler before the grating. Since
the grating might reasonably be expected to have a significant effect on pulse
shape, data was taken with the output coupler placed, instead, following the
grating. Figures 4.15 and 4.16 show the pulse profiles with the output coupler

positioned before and after the grating. Other than the difference in output
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Figure 4.16: The pulse profiles as shown in figure 4.16 shown in a larger time
window. The shapes are almost identical, and again, the position of the sub-
pulses has not changed, despite significant changes to the cavity.
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Figure 4.17: The pulse profiles before and after increases the cavity length by
om. The position of the sub-pulses has not varied between the two systems.

power due to the orientation of the coupler, there was no obvious difference in

the pulse profiles.

4.4.8 Changing large-scale cavity length

Identifying the source of the sub-pulses appearing between the main dark pulses
proved to be a difficult task. There were observed to vary from day to day,
but not as a result of changing the cavity power, the mode-locking power,
the orientation of the gratings or the output coupler, the interaction length
over which mode-locking occurred or due to the small changes in cavity when
elements of the laser were removed and replaced, with the attendant changes in
splices, cavity length etc. A final possibility was to change the large-scale cavity

length, adding and extra 5m to the 30m of fibre which made up the laser.
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Figure 4.17 shows the results of this experiment. There is no significant change
in either the positions or the depths of the sub-pulses. It remained possible
that the pulses were due to deformation of the mode-locking pulse signal, since
the fibre in the cavity was not single-mode at the YAG wavelength. If this was
the case, then switching to a different mode-locking signal should eliminate the

problem.

4.4.9 Reducing rﬂodulating pulse-width.

There remained at this point only one possible technique for reducing the width
of the dark pulses to a width more suitable for the propagation experiments
planned, this being to reduce the width of the modulation window shaping the
pulses. This window was created by cross-phase modulation with the bright

pulse copropagating with the cw signal.

The modulation source was therefore changed from the 100ps pulse YAG laser
operating at 1064nm to a colour centre laser (FCL) producing 8ps pulses at
a wavelength of 1560nm. The choice of wavelength was determined by the
availability of the wavelength selective couplers required to insert and remove
the FCL pulses. These operated over a very narrow range, and so it was not
possible to take advantage of the the large tuning range of the FCL to exploit

the variation between walk-off rates at different wavelengths.

Figures 4.18and 4.19 show the pulse profiles obtained using 8ps pulses to provide
a mode-locking signal. The width of the output pulses was reduced only to
100ps, which was still considerably longer than what would be required for any

propagation experiments.
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Figure 4.19: The pulse profiles using 8ps pulses from the FCL laser to mode-lock
the cavity, shown in a larger time window.
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4.5 Conclusions.

Although it was not possible to study the behaviour of the dark pulses during
propagation in fibre, there are several other indications in the work described
above which suggest these pulses are not, in fact, dark solitons. One of the
principle objections to this theory is that changing the background power by an
order of magnitude does not produce any significant difference in either pulse
width or number of dark pulses observed per round trip. As discussed in sec-
tion 2.2, an odd dark pulse launched with greater background power than would
be required for a dark soliton of that width will narrow, with the formation of
symmetrically arranged gfey solitons to each side. If the pulses were forming
in the cavity as a result of nonlinear pulse shaping (other than via cross-phase
modulation with the external pulse source) then it would be expected that
changing the cavity power by a factor of ten would have a dramatic effect on

the resulting pulse profiles.

In addition, changing the cavity dispersion would be expected to have a signif-
icant effect on any nonlinear pulse-shaping that was occurring, and none of the

experimental work gave any indication that this was so.

However, the pulses produced by this configuration were remarkably stable in
the face of large-scale changes to cavity dispersion, length, pump power and
wavelength and pulse-width of the mode-locking signal. Fibre lasers are in
general considered to be stable pulse sources, and this would appear to be
particularly true in this case. Such a reliable source would lend itself well
to dark soliton generation via the imposition of a suitable phase profile on a

pregenerated dark pulse.
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Chapter 5

Sideband formation in dark

soliton systems.

Pulse propagation in real transmission lines is affected by many different mech-
anisms. In addition to the standard problems of loss and dispersion it is also
important to consider the effect of any periodic perturbation the signal experi-
ences during propagation. A prime example of this would be the disturbance
caused by gradual loss followed by lumped gain in a transatlantic system, which

contains many evenly spaced amplifiers.

This disturbance has been shown for both bright solitons and cw signals to cause
the development of spectral sidebands, which gradually swamp the signal in the
time domain. The phenomenon has also been observed in laser cavities, where
the signal periodically experiences discrete loss at the output coupler followed

by gain within the lasing medium.

This chapter discusses the effect on dark solitons of propagation in the presence
of such periodic power variation, showing how it is essential to consider not only

the response of the pulses but also the behaviour of the supporting background
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when analysing the system[61].

5.1 The response of bright solitons to periodic

perturbation.

Various studies, for example [62], have been made of the behaviour of bright
solitons in a system which suffers periodic loss and amplification. This can either
be in the form of gradual loss and lumped gain, such as would be experienced

In a transmission line, or lumped loss and continuous gain in a laser cavity.

Taking the case of transmission lines with amplifiers at fixed intervals across
the link, the problem arises because the amplification provided at the end of
each stage is not adiabatic, that is, the pulse does not maintain a constant
relationship between width and height. To propagate as a soliton, the amplified
bright pulse must reform, becoming narrower and increasing in peak power. A
combination of this plus the gradual loss experienced due to propagation in a
fibre means that the soliton is continually reforming, shedding energy into low

amplitude dispersive waves at all frequencies during every amplification period.

Those dispersive waves which are phase-matched to the soliton will interfere
constructively with similar waves shed in earlier cycles, resulting in the devel-
opment of sidebands which grow linearly with distance. Their separation Aw

from the main spectral peak was shown by Smith et al. [62] to be:

Aw =+ {4”” - 1} (5.1)

T Za

where the pulse has full width at half maximum intensity of 1.767, z, is the

amplifier spacing normalised to the soliton period and m is an integer.

The power transfered from the soliton to the sidebands becomes more significant

as the spacing between amplifiers is increased. This then represents a limit on
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the transmission system design in terms of amplifier spacing (or pulse width)
for stable bright soliton propagation. Since the fibre parameters and amplifier
spacings in a real system are rarely so uniform, the narrow bandwidth of the
process may mean that the sidebands are washed out to some extent, and so this
may not be a major problem for system designers. However, the same equations
can be applied to a laser cavity, where the solitons experience periodic lumped
gain and loss. In this case, the periodicity of the perturbation will be exactly

uniform, and the effect is of some importance.

5.2 The respo"nse of a CW signal to periodic

perturbation.

Matera et al demonstrated[63] that for both normal and anomalous dispersion,
the periodic power variation of a cw signal can provide the phase matching
required for a four-wave mixing process to occur (see section 1.3.3). This results

in noise-seeded spectral sidebands which grow exponentially with distance.

It was shown that the positions of the spectral sidebands, relative to the central

peak, are given by:

_ _2@ _ 2"/P()Co =
AQ, = :}:J{ A } (5.2)

where p is an integer, Pycy is the average cw power and < is the nonlinear

coeflicient defined by equation 1.13.

Although the bright soliton sidebands have the same origin in periodic per-
turbation, their nature is completely different, the key feature being that the
soliton sidebands result from a resonant process, and increase linearly, whereas
in the cw case the process is parametric. It should also be noted here that for

large pulse widths, the bright soliton resonances have the same frequency as




the cw sidebands for even p. There are no soliton resonances at the frequencies

defined by odd p.

5.3 The response of dark solitons to periodic

perturbation.

The only previous studies of the amplification of dark solitons used stimulated
Raman scattering to provide gain [23], [64]. This gain is a gradual process, and
so might be expected to produce less disturbance. In [23] it was observed that
increasing the amplification period beyond the dark soliton period resulted in

unstable propagation, but the reasons for this were not investigated.

When considering the response of dark solitons to periodic perturbation it is
necessary to consider the response of both the soliton and the bright background
which supports it. The original analysis which follows shows how the four-wave
mixing process described above for a cw signal affects the resonant sidebands
produced by the perturbations to the dark soliton, and also the effect of the

large cw signal on the phase of the dispersive radiation shed by the soliton.

We consider here the behaviour of the fundamental, or black soliton. The mech-
anisms involved in sideband generation are equally applicable to grey solitons,

although the positions of the sidebands will be different.

A black soliton of FWHM 1.767 can be seen from equation 1.36 to have phase
¢ varying with distance at twice the rate of the bright soliton phase, thus:

_1h1Z

T2

¢ (5.3)

where Z 1s the distance in real units.

In a similar manner to bright solitons, periodic amplification and loss will pro-
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duce a continuous source of frequency components outside the dark soliton
spectrum. These are produced coherently with the soliton, but have different
group velocities and so will experience different phase shifts over one amplifier
spacing. During repeated cycles, particular frequencies will experience either
constructive or destructive interference, depending on their group velocity (and
hence phase rotation) relative to the amplifier spacing. It is the constructive in-
terference which results in sideband formation, which will be observed at those

wavelengths where the following phase-matching criterion is satisfied:
V(Za4) — ¢(Z4) = 2mm (5.4)

where m is an integer and Z 4 is the amplifier spacing in real units.

It is therefore necessary to determine 1(Z,4), the phase of an arbitrary low am-
plitude dispersive component after propagation over one amplification period.
Such dispersive waves propagate in the presence of a large cw background and
so will have a phase altered via cross phase modulation. Both components of
the field must be taken into account when calculating the phase of the dispersive

waves shed at any point.

We begin with the ansatz:
A = Agyei@i=kor) o 4, eieh2/? (5.5)

where A, and Ay are the amplitudes of the cw and dark soliton parts of the
total field, and kg is the wave vector associated with the cw field, for which we
require a value in terms of 33, w and 7. To find this we substitute the ansatz

into the Nonlinear Schroedinger Equation, to obtain an exact solution.

Recall that the NLS in the normal dispersion regime has the form:

dA 10%4
fm— = fo=—— — y|A|*A .6
Laz ﬁ22 912 YAl (5.6)
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(See section 1.4.1 for more details.)

Let a = (wt — k,z) and let b = zf,/7%. Then we find the following variations of

the field with propagation distance z and time ¢ as:

0A . ia Zﬁ? b 32 A SN2 ia
5 = —iko, A€’ + ;—;Adse o (iw)” Acwe (5.7)

We assume A, is small, and so higher order terms may be neglected. This

gives:

|APA = Apy AL €™ + Acp A% (e + e 7™ (5.8)

The substitution is then straightforward.

Do W —bs 2 ia ia 42 ia 2 —ia ,i2b 3 ib
ﬁAdse = —Sw A, =27 A e A e =y Ay Ay e e =y A e

(5.9)

koAqpe™—

Assuming the background field is sufficient to support a black, or fundamental
dark soliton of pulse FWHM 1.767, that is that Py = |f,]/77?%, we may make the
substitution A2, = |f;|/y7%. The remaining terms in Ay, cancel, and dividing

through by A, gives:

koe'® = -—%—w%i“ - 2%—6”‘ - %e”i“eﬂb (5.10)

To obtain the phase of the cw portion of the field, we retain those terms in e*,

which produces the following expression for kq:

ko = —=2w? — 22 (5.11)
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The resulting phase of the dispersive wave with frequency offset Aw at a distance

Z will be:

:ﬁgAMQZ_{—Ql,BQlZ

5 - (5.12)

Y

The first term of equation 5.12 is the phase of the linear wave solution to the
NLS in the absence of loss and nonlinearity. The second term includes the
effect on the wave phase of cross phase modulation with the cw background

supporting the black soliton.

Substituting (5.3) and (5.12) into (5.4) leads to the following expression for the

sidebands’ frequencies:
dmm 2

6o|Zs T2

For large 7 this approximates to the same values expected for the equivalent

(5.13)

bright soliton, despite the cross-phase modulation term. It could therefore be
expected that the sidebands produced by bright and dark solitons would be the

same.

However, as was discussed previously, the periodic amplifier structure can phase-
match a four-wave mixing process with the cw background, providing paramet-
ric gain at certain frequencies.[63] Using the results of Matera et al.[63] for a
cw signal of power P and assuming that the background is supporting a black
soliton as above, that is Py = |Bs]/y7?%, we obtain the following expression for

the frequencies of maximum gain due to this process:
2p7 2
Ww=,/— = = 5.14
|B2|Z4 T2 ( )

Comparison of equations 5.13 and 5.14 shows that the spectral positions of

where p i1s an integer.

resonant loss from the solitons are a subset of those positions where parametric
gain occurs. The dark soliton sidebands therefore grow exponentially, the linear

growth of the resonant sidebands seeding the parametric gain. In addition,
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sidebands will develop at the wavelengths for which p in equation 5.14 is odd,
as a result of the large gain from the four-wave mixing process acting upon the

dark soliton spectrum.

In the discussions which follow, the sidebands which occur at a point of reso-
nance between the soliton and dispersive waves will be referred to as the res-
onant sidebands, while those which occur for odd p will be referred to as cw
sidebands. This is for convenience only, since the names are an oversimplifica-

tion of the mechanisms involved in each case.

5.4 Simulatioﬁs of sideband formation.

To examine in more detail the behaviour predicted by the analytical description
given above, a series of numerical simulations were performed, and the temporal
and spectral responses of the solitons observed. The numerical demonstration of
dark soliton sideband formation used the split-step Fourier method to describe
pulse propagation (see section 1.5), initially ignoring the effects of amplifier
noise, Raman terms, third order dispersion and shock. Once the behaviour of
the simple system was understood, noise was added as the next most significant

effect likely to alter propagation.

The simulations studied pairs of black solitons, to avoid boundary problems
with the dark soliton phase shift. The initial background amplitude in each
case was scaled to the power defined by the Average Soliton Model for optimum
propagation of the fundamental soliton (see section 1.4.2). A distance of fifty
amplifier spacings was arbitrarily decided upon, and the model run repeatedly

with different values for amplifier spacing.

We observed exponential sideband growth at the frequencies predicted by both

equations 5.13 and 5.14. Over amplifier spacings which were short compared
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to the dark soliton period, no sidebands were observed and the dark solitons
propagated without corruption for fifty amplification periods. As the amplifier
spacing was increased, it became possible to locate sidebands in those positions
where a region of parametric gain coincided with a dark soliton resonance point,
le at the frequencies given by equation 5.14 for even p. With further increases
sidebands were also observed at those frequencies predicted by equation 5.14

for odd p.
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Figure 5.1: Spectrum of a pair of 10ps dark solitons after propagation over fifty
amplifier spacings of 25km, with a system dispersion of -1ps/nm.km, central
wavelength of 1.5um, fibre loss of 0.2dB/km. The dark soliton period associated
with these system parameters is 42.3km. Note the relative heights of the centre-
most (cw) and second (resonant) sidebands.

This form of behaviour has been illustrated using a pair of 10ps FWHM black
solitons, at a dispersion of -1ps/nm.km, central wavelength of 1.5um, fibre loss
of 0.2dB/km and amplifier spacing of 25km. The dark soliton period associated

with these system parameters is 42.3km.

Figure 5.1 shows the spectrum following propagation over fifty amplification
periods. Here both the first four-wave mixing sidebands and the first resonant

sidebands can be seen, with the latter dominating. (The low frequency beating
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in the spectrum is due to the presence of two pulses in the time window.)
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Figure 5.2: Evolution of the 10ps black soliton being re-amplified every 25km.
Note the 10ps period of the modulation, corresponding to the first resonant
sideband at 0.1THz, and the appearance of a secondary modulation towards the
end of the propagation, due to the later development of the first cw sideband.
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Figure 5.3: Position relative to the central frequency of any sidebands clearly
distinguishable from background noise after propagation over fifty amplifier
periods, for a variety of amplifier spacings. Numerical results shown with dia-
monds. The solid and dashed lines show the positions predicted by theory for

the first four sidebands.

Figure 5.2 shows the effect of this sideband growth in the temporal domain.

The growth of the sidebands at 0.1THz is clearly visible as a modulation with a
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period of 10ps, with the increasing importance of the second spectral component

appearing as additional modulation near the end of the propagation.

Figure 5.3 shows the agreement between predicted results and sideband posi-
tions observed in simulation, showing clearly the domination of the resonant
dark soliton sidebands at short amplifier spacing. For each amplifier spacing,
the resonant sidebands appear long before the noise-seeded cw sidebands. The
solitons were in each case propagated over fifty amplification periods, at a pulse
separation sufficient that the effects of soliton-soliton interaction over the sys-

tem length could be ignored.
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Figure 5.4: Energy transferred from the soliton spectrum into the first two
sidebands, for the system defined in figure 4.1.

The width of the sidebands agreed well with the four-wave mixing gain band-
width given by Matera et al[63] for each frequency component. Using these
values, it was possible to define a region within the spectral window around
each sideband and observe the variation of energy at the predicted sideband
position. Figure 5.4 shows the values obtained over a propagation distance of
50 amplifiers spaced at a separation of 25km for the first two sidebands, show-
ing clearly both the domination of the first resonant sideband, and also the

exponential growth exhibited by both.
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5.5 Comparison with bright solitons.
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Figure 5.5: A comparison of the energy transferred into the first significant
sideband for equivalent bright and dark solitons.

An interesting comparison may be made between bright and dark solitons when
periodically amplified in this manner, by comparing the energy transferred into
the sidebands of each pulse over systems with equal dispersion in the normal and
anomalous dispersion regimes. Figure 5.5 shows how the energy transferred into
the first significant sideband increases with distance in the case of fundamental
bright and dark solitons of equal pulse width. The other sidebands associated
with the bright and dark solitons were all less than 0.1% of the spectral intensity

of the first sideband, and so have been neglected in this comparison.

Although the exponential growth of the dark soliton sidebands ultimately over-
takes the linear growth of the bright soliton sidebands, the dark soliton system
loses less energy from the soliton into sidebands over the first fifteen amplifica-
tion periods. The precise location of the crossover point will of course vary with
system parameters. In general it can be said that once the limits of the average
soliton model are exceeded dark solitons are only more stable with respect to

this perturbation over short amplifier chains.
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The amplifier spacing was the same (15km) in each, a deliberate choice being
made to use real units, rather than units normalised to the soliton period. It
may be argued that this comparison is invalid, since the normalising length
scale of the soliton period is different for bright and dark solitons of the same
pulse-width and soliton number propagating in fibre with the same |3;|. At
this point, the reasons for making such comparisons must be considered, with
likely possibilities being the cost in terms of equipment for bright and dark
soliton systems. In this case, the system length must be in real units, and so
the only results which are relevant are those which deal with kilometres, not

soliton periods.

5.6 The effect of amplifier noise on sideband

formation.

The initial simulations of sideband formation used the most basic system model
available, with only the effects of dispersion, nonlinearity and loss included.
However, because of the nature of the effect, an important consideration for

real systems will be the effect of noise in modifying sideband formation.

Source and amplifier noise will both provide seeds for four-wave mixing with
the cw background as described above. Thus significant sideband development
may be observed much earlier in the propagation, and the presence of a second
method of seeding the cw sidebands means that the seeding due to the soliton

resonances may no longer be relevant.

The relative importance of seeding due to system noise compared to seeding
via soliton resonances will depend on the noise parameters chosen. (The in-

clusion of noise in the numerical model is discussed in greater detail in Chap-
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Figure 5.6: The spectrum of a pair of dark solitons experiencing periodic loss
and gain in a system with noisy amplifiers. Other parameters are as defined in
figure 4.1. Note the relative levels of the first two sidebands.
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included in the system.
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ter 6.3.1 Using the system described above and assuming a noise factor N, of
1.5, typical of non-ideal amplifiers, the central (cw) sidebands form after much
fewer stages, and after fifty amplifiers are of far greater intensity than the first
resonance-seeded sidebands. Figure 5.6 shows the spectral field at the output,
and figure 5.7 the energy in the first and second sidebands. Compare this with
the equivalent curves for a system with no noise (see figure 5.4, noting that
the scales on the two curves differ by an order of magnitude). Although the
energy in the resonant sideband is similar in each case, the cw sideband has

been increased more than ten-fold.

5.7 Variation in amplifier spacing.

In long amplifier chains, the spacing between amplifiers is obviously more critical
for dark solitons than for bright. Since dark solitons show reduced sensitivity to
Gordon-Haus jitter compared to bright solitons[24] the main system limitation
in terms of amplifier spacing may arise from the sideband instability discussed

here, rather than jitter considerations.

However, it has been suggested [63] that in long-haul systems, such as the inter-
continental optical links, non-uniformities in fibre parameters and amplification
period will wash out the narrow bandwidth gain provided by the four-wave
mixing process discussed for the cw background. Code was written to include

such a variation in the simulated model.

Figure 5.8 shows the energy transfered into the spectral sidebands of the stan-
dard black soliton used in this work, propagating in a transmission line, with an
average amplifier spacing of 25km, but with a small gaussian variation about
this value. Figure 5.8a recalls the behaviour with no variation in amplification.

Figure 5.8b shows the change with a variance of 0.2km in amplifier spacing, and
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Figure 5.8: The effect on sideband growth of slight variations in amplifier spac-

ing. (a) no variation, (b) 0.2km variation, (¢) 1km variation.
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figure 5.8¢ the results with a variance of 1km.

It can be seen that an average variation of +0.2km does not appear to make any
significant difference to the energy transfer away from the soliton. Increasing
the error to £1km produces a reduction in the energy in the second (resonance-
seeded) sideband, but a large increase in the energy in the first (noise-seeded)
sideband. A reasonable explanation for this would be that the variation results
In a greater potential for seeding the parametric process, and so the sideband

growth begins earlier in the propagation.

The interaction between the effects of including noise in the system, and varying
the amplifier spacing frofn span to span has not been studied in any detail,
owing to time constraints. It is not unreasonable to assume, é priori, that the
sideband growth observed when noise is present will be reduced by some extent
in systems with varied amplifier spacing. However, to quantify this reduction
would require a more thorough analysis of all the factors involved than was

possible in the time available.
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Figure 5.9: The sideband energy with a variation in amplifier spacing of 5km.

The value of 1km, (corresponding to a 4% error) was judged to be the largest
reasonable variation in a transatlantic system, and produced only a minimal

improvement in the final pulse profile. Obviously in land-based system there
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will be a much greater variation than this, to accommodate natural and man-
made features of the communications link, and simulations with a variance of
5km, corresponding to a 20% error, confirm this view (see figure 5.9). Including
this information in the factors to be considered when designing new transmission
systems would allow the problem of sideband growth to be virtually eliminated
at the planning stage, by deliberately including a 20% variation in amplifier

spacing.

5.8 Conclusions

The principle conclusion of this chapter is that in otherwise identical transmis-
sion systems, the growth of spectral sidebands due to the periodic nature of the
loss and amplification cycle will result in greater deterioration of dark soliton
signals than bright. This can be attributed in part to the shorter soliton period
associated with dark solitons, but principally to the combination of the soliton
response with that of the cw signal which supports the dark soliton to this type

of periodic disturbance.

The exponential sideband growth predicted and observed in simulations of dark
soliton propagation is in direct contrast with the linear sideband growth experi-
enced by bright solitons. These results neatly illustrate the point that knowing
the response of bright solitons to a given perturbation will not necessarily give
any indication of the behaviour of dark solitons in the same situation. In this
case, the presence of a large cw signal has a most dramatic effect on the final

response, especially in noisy systems.

Including a large (20%) variation in the amplifier spacings across the transmis-
sion line has been shown to significantly reduce the energy transferred from the

soliton into sidebands, and this may prove to be a convenient solution to the
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problem. A more extensive study of the interplay of the effects of noise and
varied amplifier spacing would be required before reaching a final conclusion
on this issue. Chapter 6 looks at another possible solution, and analyses the

benefits of spectral filtering to control sideband growth (see section 6.2).

The work described in this chapter has focussed mainly on the effects of gradual
loss followed by lumped gain on the propagation of dark solitons, showing how
the exponential sideband growth in the dark soliton spectrum can be explained
by including in the calculations the effects of the cw field which supports the
soliton. The results may be equally well applied to a system with distributed
gain and lumped loss, for example in a fibre laser. Many observations have been
made of sidebands in the outputs of bright soliton lasers[65], and the formation
of sidebands with exponential growth may be an obstacle to dark soliton gen-
eration within long cavities, for example in fibre lasers which generally have a

considerable cavity length compared with conventional solid state lasers.

141




Chapter 6

Dark soliton control techniques.

The problem of control of pulse position is of great importance in communication
systems, and in this chapter the subject is studied from the point of view of
dark solitons. The work described shows that their response to perturbations
and control techniques is in many cases significantly different to that of bright

solitons or other pulses.

Two of the standard bright soliton control techniques are to use spectral filtering
and temporal phase modulation. Spectral filtering may be used to remove or
severely limit unwanted energy in the wings of the soliton spectrum. This may
for example be introduced by shot noise in the amplifiers, or as a result of
periodic perturbations over distances comparable to the soliton period. Such
filtering would then eliminate to a large extent such effects as Gordon-Haus

jitter (see for example Mecozzi et al.[66] and Mollenauer et al[67]).

Temporal phase modulation has also been successfully used to guide bright
solitons, keeping them within a time slot defined by the shape of the modulation
applied[68]. This technique could help solve the problem of timing jitter, and

could also be used to constrain the motion of grey solitons, which have a different
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velocities with respect to the background, depending for each on pulse depth

and the sign of the associated phase shift.

6.1 The Response of Bright and Dark Solitons

to Periodic Filtering

The response of both bright and dark solitons to periodic spectral filtering
was examined numerically using the split-step Fourler technique to simulate
propagation in a noiselesé', loss-free system. The benefit of numerical analysis
is that it allows the different contributions made to the total behaviour by such
effects as loss, noise etc to be studied separately, to improve the understanding
of combined effects. Here it was possible to ensure a comparison of like with
like, changing only the sign of dispersion and the initial pulse conditions when

considering the behaviour of dark and bright solitons.

Because solitons are formed as a balance between nonlinear and dispersive ef-
fects, it is possible for them to reform following spectral filtering with relatively
narrow filters, providing the total energy lost to the system is restored following

filtering.

In general, analytical and numerical studies of dark soliton propagation have
been concerned only with the behaviour of the black, or fundamental soliton.
Here we also consider the response of grey solitons, since initial work suggested
there were some important difference, even between solitons of 100% and 99.99%

darkness.

6.1.1 The response of bright solitons to periodic filtering.
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Figure 6.1: The propagation of a 10ps bright soliton, periodically filtered every
40km with a real Lorentzian filter of bandwidth 0.15THz, and experiencing a
dispersion of 1ps/nm.km.

Figure 6.1 shows the temporal and spectral evolution of a 10ps bright soliton
propagating in the absence of loss or noise, with a dispersion of 1ps/nm.km.
This corresponds to a soliton period of 84.6km. The transmission line included
filters every 40km, this distance being chosen to be close to the equivalent dark
soliton period of 42.3km. (Recall that the phase of a dark soliton evolves at

twice the rate of the bright soliton)

The filters used took the form:

H(f) = —— (6.1)
142 (%&)

where f; is the filter central frequency, and f, the filter bandwidth. This is the
Real (as opposed to complex) part of a Lorentzian filter, a standard numerical
approximation to the Fabry-Perot etalon which can be used to describe many
practically realisable filters. Using the full form of the Lorentzian filter imparts

a small temporal shift to the pulse at each stage, which complicates analysis
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Figure 6.2: The propagation of a 10ps black soliton, periodically filtered every
40km with a real Lorentzian filter of bandwidth 0.15THz, and experiencing a
dispersion of -1ps/nm.km.

and so the Real form was chosen for the initial work. The Real and complex
filters have the same power spectrum, and are generally accepted to have the
same effect on pulse behaviour, other than change in position produced by the

complex filter.

The bright soliton reforms to accommodate the periodic filtering, and propa-
gates without any significant loss of structural integrity, as would be expected.

However, the response of the dark soliton is not so satisfactory.

6.1.2 The response of black solitons to periodic filtering.

Studying the propagation of a black soliton in the equivalent system to that
described above for bright solitons, but in the normal dispersion regime (see
figure 6.2), significant pulse reshaping can be seen occurring in the wings of

the soliton. Figure 6.3 shows the temporal profile at the end of propagation.
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Figure 6.3: The final profile of a black soliton following propagation for 2500km
filtered every 40km with an 0.15THz filter, with a dispersion of -1ps/nm.km

An inverted pedestal has developed across the soliton, becoming wider with

increasing propagation distance.

One contributing factor in this comparison between bright and dark solitons
1s that in terms of the relative length scale of the soliton period, the dark
soliton travels twice as far as the bright soliton between filters, and is therefore
experiencing the equivalent of a much greater perturbation. Figure 6.4 shows
the profile of a black soliton propagating in the same system, but with the
dispersion halved to -0.5ps/nm.km, doubling the soliton period. The depth
of the plateau has increased, and the width decreased, but the output is still

clearly perturbed compared to the bright soliton propagation.

146




0.010[ ' ‘ ‘ ‘ "]

0.008}
o i
= 0.0067
G;) 0,004_‘ ]
O L
ol 3
0.002 5
0.000¢L . . 1 1 ‘
0 200 400 800 800 1000

Time, ps

Figure 6.4: The profile of a black soliton following propagation for 2500km
filtered every 40km with an 0.15THz filter, and a dispersion of -0.5ps/nm.km.

6.1.3 The response of grey solitons to periodic filtering.

In the case of a dark soliton with a greyness parameter of 0.99, a similar distor-
tion is seen in the wings of the pulse (see figure 6.5). The combination of the
natural movement of the grey soliton, and the modulation produced by periodic

filtering produces an asymmetric profile.

There is, however, an important second effect of spectral filtering on grey soli-
tons, the imposition of a change in velocity. To demonstrate this more clearly,
the system parameters have been changed from those given above, to a system
with a dispersion of -20ps/nm.km using solitons with pulse widths of 80ps. The

filter spacing used was 12.5km, approximately one tenth of the soliton period.

Figure 6.6 shows the position in time during propagation of an unfiltered 99.99%
grey soliton (solid line), and the variation in position when the soliton is filtered

with a bandwidth of 0.1THz (dotted line) and 0.05THz (dashed line). There
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Figure 6.5: The profile of a 99.9% grey soliton following propagation for 2500km.

is clearly a contribution made by the filters to the timing of the pulses, the
importance of which depends on the filter bandwidth. Instead of exhibiting a
linear relationship between pulse position and propagation distance, the filtered

grey soliton follows a curved path in time.

Implications of the effect of filtering on grey solitons.

This is an extremely important result from the point of view of systems design,
since all real transmission systems contain some bandwidth limiting elements.
Although the effects shown in figure 6.7 are a result of very severe filtering, such
as is unlikely to be encountered in a typical system, the motion discussed above
was caused by relatively weak filtering, on solitons which deviated from total

blackness by only 0.01%, and is therefore potentially a much greater problem.

Some key features of the response may be identified, principally that the change

in motion depends not only on the strength of the filter, but the greyness
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Figure 6.6: The temporal position of black and 99.9% grey sohtons when peri-
odically filtered with filters of varying bandwidths.

parameter B determining the depth of the soliton. This will be a crucial factor
in the behaviour of dark solitons in noisy systems, where each pulse will have
a slightly different depth, as a result of the reshaping which occurs when noise
is superimposed upon the soliton profile. The small timing errors produced by
this reshaping will be increased if the system contains any filtering elements,
since each pulse will have its individual motion affected by a slightly different

amount by the filters.

There has been only one experimental study of the propagation of data-carrying
grey solitons[56] to date. The results of this work do not indicate a problem
with timing of the grey solitons, but the propagation distance was only slightly
greater than the soliton period, and so it is very possible that such effects would

not have been observed.
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Figure 6.7: Various stages in the propagation of a strongly filtered black soliton,
over many soliton periods.
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6.1.4 The response of black solitons to extreme periodic

filtering.

Increasing the severity of the perturbation, and propagating for extended dis-
tance allowed a more thorough study of the response of black solitons to be
carried out. In more extreme simulations, such as those shown by figure 6.7,
the formation of a dark pedestal across the black soliton (Figure 6.7b) was ob-
served at an early stage. As propagation progressed, the edges of the pedestal
became deeper (Figure 6.7¢c) with structure developing in the phase profile. The
dark soliton was finally supported by a bright pulse of ever-decreasing intensity,
becoming ever more isolafed from the cw background (6.7d and e). This trend
could be seen to continue until interference with neighbouring solitons became
the most significant factor in the propagation. It is interesting to note that
the soliton width, blackness and phase shift remained unchanged throughout,

despite the large reduction in background level.

The 10ps black soliton used here was filtered every 10km with an 0.25THz filter,
for a total distance of 5000km. A system like this is unlikely to be found in
practice and so such an extreme response will be rare but the more minor pulse

distortion shown in figure 6.3 could constitute a real problem for system design.

6.2 The effect of filtering on dark soliton side-

band formation.

As shown in chapter 5, in a system with large amplifier spacing compared to the
soliton period, the effect of periodic loss and amplification on dark solitons and
on the background which supports the solitons combines to produce spectral

sidebands which grow exponentially with propagation distance. In severe cases,




the signal is destroyed completely in a very few amplifier spans.

Sideband suppression by spectral filtering is an obvious method to consider,
since it should in theory both reduce the noise which seeds the sidebands, and
limit the growth of energy outside the soliton spectrum. Some additional am-
plification must be provided to restore the system energy, but in all the cases
described below it was negligible compared to that required to compensate for

loss over the previous span, and therefore assumed to have no effect on sideband

growth.
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Figure 6.8: Pulse profile and associated spectrum after transmission for 60
amplifier spacings of 40km, with no filtering. The system used 10ps black
solitons, and a dispersion of -1ps/nm.km, which corresponds to a soliton period
of 42.3km.

Figure 6.8 shows the temporal and spectral profiles of a pair of 10ps black
solitons following transmission over a distance of 2400km, with amplifier spacing
of 40km, very close to the soliton period of 42.3km. Any information present

at the start of transmission has been lost.

Figures 6.9 to 6.11 show the effects of filtering at each amplifier with progres-
sively stronger filters. Beyond a certain strength of filter, the modulation ob-
served in the ideal system propagations described above can be seen developing.
There are clearly large benefits to be had from a certain amount of filtering,

but these must be offset against the distortion produced by periodic filtering.
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Figure 6.9: Pulse profile and associated spectrum, filtering every 40km with an
0.25Thz real Lorentzian filter, using the system parameters defined in figure 6.8
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Figure 6.10: Pulse profile and associated spectrum, filtering every 40km with
an 0.2THz real Lorentzian filter, using the system parameters defined in figure
6.8.
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Figure 6.11: Pulse profile and associated spectrum, filtering every 40km with an
0.125THz real Lorentzian filter, using the system parameters defined in figure

6.8.
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Figure 6.12: Bright soliton propagation in the same system, with 0.125THz
filters

However, the results here show that spectral filtering can be very useful in
suppressing sideband growth, and that the limits of the average soliton model
may therefore be extended quite considerably without signal degeneration via

this particular mechanism.

It is interesting to note that a bright soliton in the same system (with the sign of
dispersion reversed) will propagate almost entirely unchanged (see figure 6.12).
This suggests that the amount of distortion is in some way related to the am-
plifier spacing as a fraction of the soliton period, which for dark solitons is half

that for bright.

6.3 The effect of filtering on Gordon-Haus jit-

ter in dark solitons.

6.3.1 Gordon-Haus Jitter

A fundamental disadvantage of any amplification scheme over regeneration is

the extra energy added to the system due to spontaneous-emission noise in the
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amplifiers. This cannot be eliminated, although it may be reduced by good
design. In the best case, the noise associated with an amplifier is white, that is
it has an equal distribution across all orthogonal modes of the system, and has
a mean energy of (G — 1) photons per mode, where G is the power gain. The
quantum-limited white noise power of such an amplifier, with optical bandwidth
Av is given by:

P, =hv(G - 1)Av (6.2)

where A is Planck’s constant.

In nonlinear systems, this noise is not merely additive at each amplifier, a
problem in itself, but by éhanging the power in the system may also affect the

pulse’s nonlinear behaviour.

It was shown by Gordon and Haus [69] that the incorporation of spontaneous
emission noise in the field of a soliton results in a random velocity change due
to a change in the soliton’s carrier frequency. At the end of a transmission line
of length L, with amplifier spacing L, the standard deviation in pulse arrival
time relative to its starting position may be calculated as:
_ [1.763N,,N,Dh(G — 1)L*]"?
7= 9ty AessLamp@

where N, is the spontaneous emission factor associated with the amplifiers.

(6.3)

The nonlinear constant N, of the fibre is taken to be 3.22107%m?/W in this
work. D is the first order group velocity dispersion coefficient (measured in
ps/nm.km) and h is Planck’s constant. The factor () is defined as:

GaLgmp
= o-1 (6.4)

where G = exp(aLamp), and « is the power loss coefficient of the fibre. The
factor () is used to scale the input power from that required for a fundamental
soliton to that defined by the average soliton model (see section 1.4.2). Lgyy, is

the distance in kilometres between amplifiers, and L is the total system length.
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In simplistic terms, adding random noise to a bright soliton spectrum will
change its profile. To accommodate this change the spectrum will shift slightly
as the soliton reforms, and the frequency shift produced will translate into a
change in the soliton velocity. The central frequency of dark solitons is fixed
as the frequency of the supporting cw background, and so it might be expected
that the effect of noise would be somewhat different. The velocity of a dark
soliton is linked, via its phase, to its amplitude. Small changes to phase or am-
plitude, such as those resulting from a superposition of noise on the soliton, will
produce changes to the group velocity by increasing (or decreasing) the chirp

on the soliton, changing the width and height of the power spectrum.

In 1994 Kivshar et al.[24] showed that the variation in the arrival time of dark
solitons due to random changes in group velocity was smaller by a factor of
V2 than for bright solitons. However, this is still enough to cause a large
unwanted increase in the bit-error rate of a long-haul system, and some method
of suppressing the cubic growth in the variance of pulse arrival times needs to

be developed.

The use of filters[70], and more especially sliding filters[67] has been shown to
produce a dramatic reduction in the timing jitter experienced by bright solitons,
in particular reducing the growth from cubic to linear in form. The use of sliding
filters, (essentially a technique where the system is arranged so as to have a
small change in central frequency for each filter in a transmission line relative
to the previous one) did not seem appropriate for dark solitons, whose central
frequency is fixed, but investigating the effect of a chain of identical filters on

dark soliton jitter seemed to be a suitable first step.




6.3.2 Numerical model used to analyse dark soliton jit-

ter.

Because Gordon-Haus jitter results from an essentially random source, any anal-
ysis of its suppression or otherwise must use a large number of samples to ensure
that results observed are statistically significant. All values given here (unless
stated otherwise) are the result of finding the variance in pulse position of
around 200 pairs of either bright or dark pulses. The software to perform this
analysis was written specifically for this task, and the key features of the code

are discussed below.

For the bright soliton case, for each sample at each stage of propagation, the
points of full width half maximum power were located, and the centre of mass
found between these points taken to be the position of the pulse peak. The

centre of mass was defined, for a bright soliton, as

Z’:/f/z tu|?dt

6.5
S lul2dt (02

Cmass_bright =

where n is the full width at half maximum point, the centre of the pulse cor-
responds to ¢t = 0 and ¢ represents the discrete time samples of the numerical

system. |u|? is the power in a given sample ¢.

For the case of dark solitons, the centre of ‘negative mass’ was found, that
1s the power in each sample was subtracted from the background power at
half the maximum depth (an arbitrarily selected definition), and the resulting
value added to the sum so far. This definition of pulse position maximised the
contribution to the total around the centre of the soliton while minimising the
contribution from the edges of the sample, and was found to provide a more

accurate value for the exact centre than a simple centre of mass calculation.

To allow for easy comparison with previous work by others in the field the simu-
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lations were done assuming amplification was distributed along the transmission
line, that is the solitons did not experience any loss during propagation. Noise
was added at regular intervals, the distance between stages being defined as the
amplifier spacing. It has been shown|[71] that this has no effect on the observed
jitter, compared to other systems for introducing noise, and is convenient from a
numerical point of view. Each simulation used a different seed value to initialise

the random number generator.

Using the definition of noise power given in equation 6.2, the noise field ampli-

tude added to each sample was calculated as
Ny = Ny * Py /A _ (6.6)

where A is the effective core area of the fibre and Ny, is the spontaneous emission
factor associated with the amplifier. An ideal amplifier will have a value of 1
for Ny, a more realistic value is 1.5, and this is the value which has been used

in the work described here.

The noise was launched in the time domain, a field with amplitude N, and ran-
dom phase being added to each discrete element. The code to provide random
number generation was standard, the rest of the additional code to simulate

this type of amplifier was written specifically for this work.

6.3.3 Numerical demonstrations of jitter and jitter re-

duction techniques for bright and dark solitons.

Preliminary work was concerned with verifying that the modelling techniques
used could reproduce previous work. Figure 6.13 shows the observed variance in
pulse arrival times for equivalent bright and dark soliton systems. The growth
in each case is cubic, but with the average jitter of a dark soliton at any point

during propagation being less by a factor of /2 than that for bright, as expected.
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Figure 6.13: The standard deviation in pulse position from the initial conditions
for equivalent bright and dark solitons experiencing Gordon-Haus jitter.

In this, and all the following examples, the solitons used had a full width at half
maximum of 80ps, in a system with a dispersion of +20ps/nm, with amplifiers
every 12.5km. These figures were chosen for their compatibility with earlier
work on bright soliton jitter, with the first results being compared to ensure

that the model was correct.

Figure 6.14 demonstrates the benefit to bright soliton jitter of periodic filtering.
The timing variation has been almost completely eliminated, with the cubic

growth reduced to linear.

Figure 6.15 shows the jitter observed in dark solitons in a system identical
to that used in the simulations above, other than that the sign of dispersion is
reversed. Not only is the jitter not reduced, but if the curve is compared to that
in figure 6.13, it can be seen that as the filter bandwidth is reduced the jitter
actually becomes worse, and the variation in dark soliton arrival time increases.
The variance is no longer cubic, in the example shown the best curve fit to
the observed standard deviation gives an exponent of 1.777, corresponding to a

growth in the variance in arrival times of not 3 but 3.555. This is dramatically
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Figure 6.14: The standard deviation in pulse position from the initial condi-
tions experienced by bright solitons when 0.075THz filters are included in the
transmission line. Note that the increase in deviation is now linear.

different to the response of bright solitons, and has very serious implications for

any future dark soliton communication systems.

The reasons for this behaviour are not clearly understood. It is possible to
demonstrate mathematically that the action of a filter has no effect on the
motion of a black soliton. However, when noise is added to the system, the
soliton is no longer black, but grey, with the noise producing a slight change
in phase and amplitude, and therefore group velocity. As was demonstrated
in section 6.1.3, the speed of a grey soliton with respect to the background is
increased by spectral filtering. In this case any small decrease in soliton depth
(ie reduction in blackness) and simultaneous increase in speed produced by the
superposition of noise on the spectrum is enhanced by the filtering. Decreases
in speed, or equivalently increases in depth due to the same mechanism will be
suppressed somewhat, and so the net effect of filtering will be to increase the
jitter.

This counter-intuitive result shows yet again that the behaviour of dark solitons
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Figure 6.15: The standard deviation in pulse position from the initial conditions
experienced by black solitons when 0.075THz real filters are included in the
transmission line.

cannot be predicted a priori from a knowledge of the bright soliton response to
a particular perturbation. In this case the difference is not a result of the large
cw signal associated with dark solitons, but with the direct relationship between

the dark soliton amplitude, phase and velocity at any point.

It is reasonable to consider that the phase response of the filters used may be
more important for dark solitons than bright, because of the asymmetric phase

profile associated with dark solitons, and when complex filters of the form:

1

T 1+1(25h)

H(f) (6.7)

were used in the simulations, a small difference could be seen between the be-
haviours observed (see figure 6.16). However, the difference lies within the
bounds of numerical error, and cannot be considered to be statistically signifi-

cant. The result is included here for completeness.
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Figure 6.16: The standard deviation in pulse position when black solitons are
filtered with 0.075THz real and complex filters. '

6.4 Temporal phase modulation

Temporal phase modulation has been shown[68] to provide a simple technique
for controlling the position of bright solitons, and the analytical study suggested
that it would be equally successful when applied to the problem of dark soliton
control. This section describes work done in collaboration with N.J. Smith,

who has performed the mathematical analysis of the response of dark solitons

to temporal phase modulation.

6.4.1 Mathematical analysis.

When a modulator with function M (u) is inserted into the transmission line,
the equation describing propagation in the normal dispersion regime becomes:
ou' By 0%

P
— e, ! — ! NN = . "oy
5 T 5 gz~ el = M) = T cos(wmt')u (6.8)
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Under the standard transformations (see chapter 1.4.1 t = t'/7, z = B, 2'/72,

u = Tu'\/yNL /B2, this becomes

ou 10%u ) o7?
) —— — e u = _1‘ =
"5z + 2 Ot2 [l () Balm

In the absence of modulation (M(u) = 0), the dark soliton solution to this

cos(wp, Tt)u (6.9)

equation can be written as,

us(z,t) = wuge *(ntanh(Z) — iQ) (6.10)

Z = n(t-QZ2) (6.11)

In this normalised form 1t.1s easy to see why the dark soliton can be described
as a one parameter pulse. The soliton’s velocity and amplitude are related by
Q) = sin @, n = cos ¢, such that n? + Q% = 1. In this analysis we are concerned
with the variation in the parameter ¢ when a modulation of the form M (u) is

applied.

The perturbational methods of Kivshar[72] can be used to give the motion of

the parameter ¢ as,

dp 1

dz  2cos? ¢ sin qﬁRe /—-oo M(u)

dug
dz

d (6.12)

After substituting for the functions, and setting Z = n(t—1"), where 0T/0z = {,

the integral may be evaluated by parts to yield:

dgp ®7? [(wur\ 7sin(w,rT) (6.13)
dz 2Bl n ) sinh(rw,,7/2n) '
dT

i Nl
- Q (6.14)

For nearly black solitons, that is those with a small value of ¢, the pulses will
perform simple harmonic motion about the centre of modulation. Although
movement is not completely suppressed, it is now controlled and the pulse po-
sition is constrained within a defined window. The period of the SHM depends

on the peak phase of the modulation applied.
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Figure 6.17: The propagation of a pair of 99% grey solitons.

These results have been confirmed by another group using a different analytical
technique to demonstrate control of the soliton’s motion [73]. However, neither
method considers the effect of the periodic phase modulation on the ‘cw’ back-
ground which supports the solitons, nor the interactions between the two parts

of the field.

6.4.2 Numerical simulations of phase modulation as a

control mechanism.

To confirm the predictions of the theory presented above, a series of numerical
simulations were performed, using different values for the parameters associated
with the applied phase modulation M (u). Both the peak phase excursion, and
the frequency of the modulation could be changed. The modulator spacing
used was 20km, with a dispersion of -1ps/nm.km. To avoid complication the
propagation was assumed to be loss-free. A pair of grey solitons were used had
a contrast ratio of 95%, and were initialised to be travelling away from each

other, with an initial pulse separation of 500ps.
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Figure 6.18: The position of a grey soliton in the time window when a variety
of different phase modulations are applied.

Figure 6.17 shows the propagation of a pair of grey solitons as described above,
in the absence of any control mechanism. Figure 6.18 shows the position of the
centre of one of the solitons in this propagation (solid line), and the effect on
pulse position of applying a phase modulation with peak excursion of 0.0075
radians (dotted line). The peaks of the modulation coincided with the centres
of the pulses. The pulses move apart more slowly, but eventually escape the

well created by the modulation, going on to collide in the centre of the window.

Increasing the phase excursion to 0.02 radians constrains the motion more suc-
cessfully(figure 6.18 dashed line), and increasing it again to 0.08 radians is yet
more successful (dot-dashed line). However, up to this point, we have only
been concerned with the position of the soliton. Figures 6.19 to 6.21 show the

complete evolution of the pulses whose positions were shown in figure 6.18.

Additional effects of the modulation can clearly be seen on the cw background,
and although increasing the strength of the modulation produces good posi-
tion control, this is at the expense of a large amount of perturbation to the

background.

The concern over the large amount of observed modulation (bearing in mind
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Figure 6.19: The evolution of a pair of grey solitons following propagation in
a system including 0.0075 radians phase modulation, at the same frequency as

the pulse repetition rate.
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Figure 6.20: The evolution of a pair of grey solitons following propagation in a
system including 0.02 radians phase modulation, at the same frequency as the

pulse repetition rate.
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Figure 6.21: The evolution of a pair of grey solitons following propagation in a
system including 0.08 radians phase modulation, at the same frequency as the
pulse repetition rate.

that the soliton itself appears to maintain its integrity) is because in typical
communication systems the presence or absence of a pulse within a bit interval
is determined by the total energy detected. As the variation produced by the
unwanted modulation grows to be a significant percentage of the total energy
in the window, the chances of errors in reception are very much increased.
If phase modulation is to be used as a control mechanism, then some method
must be found of smoothing out the background disturbances, possibly using an
amplifier with a nonlinear response, or some similar amplitude sensitive device.
This could have a response such that power levels of the order of the CW level
cause saturation, effectively flattening any disturbances to the background; and
a response at low power levels such that the signal experiences loss, to keep the

centre of the soliton itself as dark as possible.
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6.5 Conclusions

It is clear from the results discussed in this chapter that the bright soliton
control techniques of spectral filtering and temporal phase modulation cannot
be directly applied to dark solitons. Periodic filtering has been shown to be
advantageous in suppressing spectral sidebands, providing the filter used is not
too strong. However, bright solitons can withstand much more extreme spectral

filtering whilst maintaining their pulse shape.

A second, and more serious disadvantage of the response of dark solitons to
periodic spectral filtering'is that grey solitons (as opposed to 100%, or black
solitons) will suffer a change in velocity as a result of any ﬁltéring. The black
soliton is an ideal solution, and in realistic, noisy systems, all dark solitons will
in fact be grey, even if by only a fraction of a percent. In situations where the
timing of the pulses is critical, as is the case in most communications systems
then the presence of in-line spectral filters will result in transmission errors due

to this effect.

To assess the significance of these results, a study of the effectiveness of filtering
in various situations was undertaken. The benefits in reducing sideband growth
have already been mentioned, however, a more important use would be in the
suppression or reduction of Gordon-Haus jitter. In-line filtering is known to be
extremely beneficial to bright solitons in noisy systems, reducing the growth in
the variance of pulse arrival times from a cubic to linear. However, Gordon-Haus
jitter by its nature will act upon black solitons with the same velocity as the
background to produce very dark grey solitons of random depth and velocity.
Filtering will enhance this effect, and rather than reducing the jitter, it was
shown that the variance in pulse arrival time increased with increasingly narrow
filters. A possible alternative technique has been suggested, using nonlinear gain

to control the jitter [74]. This has yet to be demonstrated experimentally.
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Moving on to other control techniques, temporal phase modulation was shown
to be beneficial to a small extent in controlling the motion of grey solitons and
a paper has been published on this subject [73]. However, the authors have not
taken into account the additional modulation produced by this technique may
render it unsuitable for use in a communications system, unless some method is
found of controlling the cw background supporting the soliton. Once again, the
conclusion is that to remove the cw part of the field by some renormalisation
process may seriously compromises the validity of any results, and should be

justified in detail.

Work is now being carried out elsewhere into the possible advantages of us-
ing some form of amplitude sensitive element to provide control functions for
dark solitons.[75] This approach affects the parameter 2 defined in section 6.4.1
directly, via the soliton depth, and so may have greater potential for this partic-
ular problem. A possible technique may be to use nonlinear optical loop mirrors

(see section 1.3.2) to provide passive control, after reference [76].
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Chapter 7

Conclusions

Many of the key features of dark solitons with respect to telecommunications
may be illustrated using the results in this thesis. Firstly, the controlled gener-
ation of dark solitons is by no means so straightforward as for bright solitons,
partly because both the amplitude and phase profiles must be created, and
partly because pulses which are absences of light do not lend themselves well

to spontaneous formation within either pulsed or cw laser cavities.

Aside from the difficulties of generation using standard techniques, the propa-
gation properties of dark solitons are significantly different to those of bright
solitons in many respects. Having a shorter soliton period means they are more
susceptible to those disturbances which occur over a similar length scale. In
addition, the presence of the cw background makes an important contribution
to the response to many perturbations, the case considered here being of side-
band formation due to periodic amplitude variation. The sidebands formed in
bright soliton systems grow linearly, due to a resonance between the soliton
and radiation shed during each cycle. In dark soliton systems, the sideband
growth is exponential, with the resonant sideband growth being enhanced by

a four-wave mixing process with the background, which is also undergoing the
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periodic perturbation.

Another important difference between dark and bright solitons is the response of
each to standard (bright soliton) control systems. In particular, spectral filter-
ing, which has been remarkably successful in controlling jitter in bright solitons,
actually exacerbates the problem when applied to dark solitons suffering from
Jitter.

The main conclusion of all of these results, and those of the other workers
in the field, is that although dark solitons show enhanced stability to some
disturbances, there are as many situations where this is not so. Comparisons
between bright and dark:solitons depend very very sensitively on the exact
system being considered, and either can be shown to be supefior with careful

selection of system parameters.

Developing the study of dark solitons from the work presented here would re-
quire a shift in focus, with less emphasis on the equivalence or otherwise with
bright solitons, and more on specific features of dark solitons. An interesting

development would be to compare them, instead, with NRZ systems.

Recent experiments[77] with improving transmission in NRZ systems have in-
cluded synchronous phase steps of 7 at the bit rate, with some success. It is
possible that this engineering solution is approaching the same conclusions as
mathematical analyses have suggested, that the optimum pulse-shape for sta-
ble transmission in the normal dispersion regime includes both amplitude and

phase components.

The potential of dark soliton communication systems is still unknown. It has
been shown here that there are many features of their behaviour which render
them particularly suitable for certain situations. It is even possible that dark

soliton systems are already being implemented, having evolved by trial and
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error from more traditional systems. This work has indicated a number of im-
portant areas which should be considered, and with the advent of more reliable
generation and modulation techniques the future of some communications may

well not be bright, but dark.
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