1,004 research outputs found

    Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation

    Get PDF
    Cystic Fibrosis (CF) is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting

    Point of View: What’s in a name?

    Get PDF
    Numerous concerns have been raised about the sustainability of the biomedical research enterprise in the United States. Improving the postdoctoral training experience is seen as a priority in addressing these concerns, but even identifying who the postdocs are is made difficult by the multitude of different job titles they can carry. Here, we summarize the detrimental effects that current employment structures have on training, compensation and benefits for postdocs, and argue that academic research institutions should standardize the categorization and treatment of postdocs. We also present brief case studies of two institutions that have addressed these challenges and can provide models for other institutions attempting to enhance their postdoctoral workforces and improve the sustainability of the biomedical research enterprise

    Novel venom gene discovery in the platypus

    Get PDF
    Background: To date, few peptides in the complex mixture of platypus venom have been identified and sequenced, in part due to the limited amounts of platypus venom available to study. We have constructed and sequenced a cDNA library from an active platypus venom gland to identify the remaining components.Results: We identified 83 novel putative platypus venom genes from 13 toxin families, which are homologous to known toxins from a wide range of vertebrates (fish, reptiles, insectivores) and invertebrates (spiders, sea anemones, starfish). A number of these are expressed in tissues other than the venom gland, and at least three of these families (those with homology to toxins from distant invertebrates) may play non-toxin roles. Thus, further functional testing is required to confirm venom activity. However, the presence of similar putative toxins in such widely divergent species provides further evidence for the hypothesis that there are certain protein families that are selected preferentially during evolution to become venom peptides. We have also used homology with known proteins to speculate on the contributions of each venom component to the symptoms of platypus envenomation.Conclusions: This study represents a step towards fully characterizing the first mammal venom transcriptome. We have found similarities between putative platypus toxins and those of a number of unrelated species, providing insight into the evolution of mammalian venom

    Measuring acute effects of subanesthetic ketamine on cerebrovascular hemodynamics in humans using TD-fNIRS

    Full text link
    Quantifying neural activity in natural conditions (i.e. conditions comparable to the standard clinical patient experience) during the administration of psychedelics may further our scientific understanding of the effects and mechanisms of action. This data may facilitate the discovery of novel biomarkers enabling more personalized treatments and improved patient outcomes. In this single-blind, placebo-controlled study with a non-randomized design, we use time-domain functional near-infrared spectroscopy (TD-fNIRS) to measure acute brain dynamics after intramuscular subanesthetic ketamine (0.75 mg/kg) and placebo (saline) administration in healthy participants (n = 15, 8 females, 7 males, age 32.4 ± 7.5 years) in a clinical setting. We found that the ketamine administration caused an altered state of consciousness and changes in systemic physiology (e.g. increase in pulse rate and electrodermal activity). Furthermore, ketamine led to a brain-wide reduction in the fractional amplitude of low frequency fluctuations, and a decrease in the global brain connectivity of the prefrontal region. Lastly, we provide preliminary evidence that a combination of neural and physiological metrics may serve as predictors of subjective mystical experiences and reductions in depressive symptomatology. Overall, our study demonstrated the successful application of fNIRS neuroimaging to study the physiological effects of the psychoactive substance ketamine in humans, and can be regarded as an important step toward larger scale clinical fNIRS studies that can quantify the impact of psychedelics on the brain in standard clinical settings

    Acute effects of subanesthetic ketamine on cerebrovascular hemodynamics in humans: A TD-fNIRS neuroimaging study

    Full text link
    Quantifying neural activity in natural conditions (i.e. conditions comparable to the standard clinical patient experience) during the administration of psychedelics may further our scientific understanding of the effects and mechanisms of action. This data may facilitate the discovery of novel biomarkers enabling more personalized treatments and improved patient outcomes. In this single-blind, placebo-controlled study with a non-randomized design, we use time-domain functional near-infrared spectroscopy (TD-fNIRS) to measure acute brain dynamics after intramuscular subanesthetic ketamine (0.75 mg/kg) and placebo (saline) administration in healthy participants (n= 15, 8 females, 7 males, age 32.4 ± 7.5 years) in a clinical setting. We found that the ketamine administration caused an altered state of consciousness and changes in systemic physiology (e.g. increase in pulse rate and electrodermal activity). Furthermore, ketamine led to a brain-wide reduction in the fractional amplitude of low frequency fluctuations (fALFF), and a decrease in the global brain connectivity of the prefrontal region. Lastly, we provide preliminary evidence that a combination of neural and physiological metrics may serve as predictors of subjective mystical experiences and reductions in depressive symptomatology. Overall, our studies demonstrated the successful application of fNIRS neuroimaging to study the physiological effects of the psychoactive substance ketamine and can be regarded as an important step toward larger scale clinical fNIRS studies that can quantify the impact of psychedelics on the brain in standard clinical settings

    PRESTO-Tango as an open-source resource for interrogation of the druggable human GPCRome

    Get PDF
    G protein-coupled receptors (GPCRs) are essential mediators of cellular signaling and important targets of drug action. Of the approximately 350 non-olfactory human GPCRs, more than 100 are still considered “orphans” as their endogenous ligand(s) remain unknown. Here, we describe a unique open-source resource that provides the capacity to interrogate the druggable human GPCR-ome via a G protein-independent ÎČ-arrestin recruitment assay. We validate this unique platform at more than 120 non-orphan human GPCR targets, demonstrate its utility for discovering new ligands for orphan human GPCRs, and describe a method (PRESTO-TANGO; Parallel Receptor-ome Expression and Screening via Transcriptional Output - TANGO) for the simultaneous and parallel interrogation of the entire human GPCR-ome

    Sequencing of the Sea Lamprey (Petromyzon marinus) Genome Provides Insights into Vertebrate Evolution

    Get PDF
    Lampreys are representatives of an ancient vertebrate lineage that diverged from our own ∌500 million years ago. By virtue of this deeply shared ancestry, the sea lamprey (P. marinus) genome is uniquely poised to provide insight into the ancestry of vertebrate genomes and the underlying principles of vertebrate biology. Here, we present the first lamprey whole-genome sequence and assembly. We note challenges faced owing to its high content of repetitive elements and GC bases, as well as the absence of broad-scale sequence information from closely related species. Analyses of the assembly indicate that two whole-genome duplications likely occurred before the divergence of ancestral lamprey and gnathostome lineages. Moreover, the results help define key evolutionary events within vertebrate lineages, including the origin of myelin-associated proteins and the development of appendages. The lamprey genome provides an important resource for reconstructing vertebrate origins and the evolutionary events that have shaped the genomes of extant organisms
    • 

    corecore