31 research outputs found

    Genetic Risk Score Predicting Risk of Rheumatoid Arthritis Phenotypes and Age of Symptom Onset

    Get PDF
    Cumulative genetic profiles can help identify individuals at high-risk for developing RA. We examined the impact of 39 validated genetic risk alleles on the risk of RA phenotypes characterized by serologic and erosive status.We evaluated single nucleotide polymorphisms at 31 validated RA risk loci and 8 Human Leukocyte Antigen alleles among 542 Caucasian RA cases and 551 Caucasian controls from Nurses' Health Study and Nurses' Health Study II. We created a weighted genetic risk score (GRS) and evaluated it as 7 ordinal groups using logistic regression (adjusting for age and smoking) to assess the relationship between GRS group and odds of developing seronegative (RF- and CCP-), seropositive (RF+ or CCP+), erosive, and seropositive, erosive RA phenotypes. In separate case only analyses, we assessed the relationships between GRS and age of symptom onset. In 542 RA cases, 317 (58%) were seropositive, 163 (30%) had erosions and 105 (19%) were seropositive with erosions. Comparing the highest GRS risk group to the median group, we found an OR of 1.2 (95% CI = 0.8-2.1) for seronegative RA, 3.0 (95% CI = 1.9-4.7) for seropositive RA, 3.2 (95% CI = 1.8-5.6) for erosive RA, and 7.6 (95% CI = 3.6-16.3) for seropositive, erosive RA. No significant relationship was seen between GRS and age of onset.Results suggest that seronegative and seropositive/erosive RA have different genetic architecture and support the importance of considering RA phenotypes in RA genetic studies

    Psychiatric co-morbidity is associated with increased risk of surgery in Crohn's disease

    Get PDF
    Psychiatric co-morbidity, in particular major depression and anxiety, is common in patients with Crohn's disease (CD) and ulcerative colitis (UC). Prior studies examining this may be confounded by the co-existence of functional bowel symptoms. Limited data exist examining an association between depression or anxiety and disease-specific endpoints such as bowel surgery.National Institutes of Health (U.S.) (NIH U54-LM008748)American Gastroenterological AssociationNational Institutes of Health (U.S.) (NIH K08 AR060257)Beth Isreal Deaconess Medical Center (Katherine Swan Ginsburg Fund)National Institutes of Health (U.S.) (NIH R01-AR056768)National Institutes of Health (U.S.) (NIH U01-GM092691)National Institutes of Health (U.S.) (NIH R01-AR059648)Burroughs Wellcome Fund (Career Award for Medical Scientists)National Institutes of Health (U.S.) (NIH K24 AR052403)National Institutes of Health (U.S.) (NIH P60 AR047782)National Institutes of Health (U.S.) (NIH R01 AR049880

    Similar Risk of Depression and Anxiety Following Surgery or Hospitalization for Crohn's Disease and Ulcerative Colitis

    Get PDF
    OBJECTIVES: Psychiatric comorbidity is common in Crohn's disease (CD) and ulcerative colitis (UC). Inflammatory bowel disease (IBD)-related surgery or hospitalizations represent major events in the natural history of the disease. The objective of this study is to examine whether there is a difference in the risk of psychiatric comorbidity following surgery in CD and UC. METHODS: We used a multi-institution cohort of IBD patients without a diagnosis code for anxiety or depression preceding their IBD-related surgery or hospitalization. Demographic-, disease-, and treatment-related variables were retrieved. Multivariate logistic regression analysis was performed to individually identify risk factors for depression and anxiety. RESULTS: Our study included a total of 707 CD and 530 UC patients who underwent bowel resection surgery and did not have depression before surgery. The risk of depression 5 years after surgery was 16% and 11% in CD and UC patients, respectively. We found no difference in the risk of depression following surgery in the CD and UC patients (adjusted odds ratio, 1.11; 95% confidence interval, 0.84–1.47). Female gender, comorbidity, immunosuppressant use, perianal disease, stoma surgery, and early surgery within 3 years of care predicted depression after CD surgery; only the female gender and comorbidity predicted depression in UC patients. Only 12% of the CD cohort had ≥4 risk factors for depression, but among them nearly 44% subsequently received a diagnosis code for depression. CONCLUSIONS: IBD-related surgery or hospitalization is associated with a significant risk for depression and anxiety, with a similar magnitude of risk in both diseases.National Institutes of Health (U.S.) (U54-LM008748

    Myosin Vb Is Required for Trafficking of the Cystic Fibrosis Transmembrane Conductance Regulator in Rab11a-specific Apical Recycling Endosomes in Polarized Human Airway Epithelial Cells

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR)-mediated Cl(-) secretion across fluid-transporting epithelia is regulated, in part, by modulating the number of CFTR Cl(-) channels in the plasma membrane by adjusting CFTR endocytosis and recycling. However, the mechanisms that regulate CFTR recycling in airway epithelial cells remain unknown, at least in part, because the recycling itineraries of CFTR in these cells are incompletely understood. In a previous study, we demonstrated that CFTR undergoes trafficking in Rab11a-specific apical recycling endosomes in human airway epithelial cells. Myosin Vb is a plus-end-directed, actin-based mechanoenzyme that facilitates protein trafficking in Rab11a-specific recycling vesicles in several cell model systems. There are no published studies examining the role of myosin Vb in airway epithelial cells. Thus, the goal of this study was to determine whether myosin Vb facilitates CFTR recycling in polarized human airway epithelial cells. Endogenous CFTR formed a complex with endogenous myosin Vb and Rab11a. Silencing myosin Vb by RNA-mediated interference decreased the expression of wild-type CFTR and DeltaF508-CFTR in the apical membrane and decreased CFTR-mediated Cl(-) secretion across polarized human airway epithelial cells. A recombinant tail domain fragment of myosin Vb attenuated the plasma membrane expression of CFTR by arresting CFTR recycling. The dominant-negative effect was dependent on the ability of the myosin Vb tail fragment to interact with Rab11a. Taken together, these data indicate that myosin Vb is required for CFTR recycling in Rab11a-specific apical recycling endosomes in polarized human airway epithelial cells

    Genetics of rheumatoid arthritis contributes to biology and drug discovery

    Get PDF
    A major challenge in human genetics is to devise a systematic strategy to integrate disease-associated variants with diverse genomic and biological datasets to provide insight into disease pathogenesis and guide drug discovery for complex traits such as rheumatoid arthritis (RA)1. Here, we performed a genome-wide association study (GWAS) meta-analysis in a total of >100,000 subjects of European and Asian ancestries (29,880 RA cases and 73,758 controls), by evaluating ~10 million single nucleotide polymorphisms (SNPs). We discovered 42 novel RA risk loci at a genome-wide level of significance, bringing the total to 1012–4. We devised an in-silico pipeline using established bioinformatics methods based on functional annotation5, cis-acting expression quantitative trait loci (cis-eQTL)6, and pathway analyses7–9 – as well as novel methods based on genetic overlap with human primary immunodeficiency (PID), hematological cancer somatic mutations and knock-out mouse phenotypes – to identify 98 biological candidate genes at these 101 risk loci. We demonstrate that these genes are the targets of approved therapies for RA, and further suggest that drugs approved for other indications may be repurposed for the treatment of RA. Together, this comprehensive genetic study sheds light on fundamental genes, pathways and cell types that contribute to RA pathogenesis, and provides empirical evidence that the genetics of RA can provide important information for drug discovery

    SARS-CoV-2 susceptibility and COVID-19 disease severity are associated with genetic variants affecting gene expression in a variety of tissues

    Get PDF
    Variability in SARS-CoV-2 susceptibility and COVID-19 disease severity between individuals is partly due to genetic factors. Here, we identify 4 genomic loci with suggestive associations for SARS-CoV-2 susceptibility and 19 for COVID-19 disease severity. Four of these 23 loci likely have an ethnicity-specific component. Genome-wide association study (GWAS) signals in 11 loci colocalize with expression quantitative trait loci (eQTLs) associated with the expression of 20 genes in 62 tissues/cell types (range: 1:43 tissues/gene), including lung, brain, heart, muscle, and skin as well as the digestive system and immune system. We perform genetic fine mapping to compute 99% credible SNP sets, which identify 10 GWAS loci that have eight or fewer SNPs in the credible set, including three loci with one single likely causal SNP. Our study suggests that the diverse symptoms and disease severity of COVID-19 observed between individuals is associated with variants across the genome, affecting gene expression levels in a wide variety of tissue types

    A first update on mapping the human genetic architecture of COVID-19

    Get PDF
    peer reviewe

    De Novo Synthesis of Sphingolipids Is Required for Cell Survival by Down-Regulating c-Jun N-Terminal Kinase in Drosophila Imaginal Discs

    No full text
    Mitogen-activated protein kinase (MAPK) is a conserved eukaryotic signaling factor that mediates various signals, cumulating in the activation of transcription factors. Extracellular signal-regulated kinase (ERK), a MAPK, is activated through phosphorylation by the kinase MAPK/ERK kinase (MEK). To elucidate the extent of the involvement of ERK in various aspects of animal development, we searched for a Drosophila mutant which responds to elevated MEK activity and herein identified a lace mutant. Mutants with mild lace alleles grow to become adults with multiple aberrant morphologies in the appendages, compound eye, and bristles. These aberrations were suppressed by elevated MEK activity. Structural and transgenic analyses of the lace cDNA have revealed that the lace gene product is a membrane protein similar to the yeast protein LCB2, a subunit of serine palmitoyltransferase (SPT), which catalyzes the first step of sphingolipid biosynthesis. In fact, SPT activity in the fly expressing epitope-tagged Lace was absorbed by epitope-specific antibody. The number of dead cells in various imaginal discs of a lace hypomorph was considerably increased, thereby ectopically activating c-Jun N-terminal kinase (JNK), another MAPK. These results account for the adult phenotypes of the lace mutant and suppression of the phenotypes by elevated MEK activity: we hypothesize that mutation of lace causes decreased de novo synthesis of sphingolipid metabolites, some of which are signaling molecules, and one or more of these changes activates JNK to elicit apoptosis. The ERK pathway may be antagonistic to the JNK pathway in the control of cell survival

    Subunit Stoichiometry of a Core Conduction Element in a Cloned Epithelial Amiloride-Sensitive Na+ Channel

    Get PDF
    The molecular composition of a core conduction element formed by the α-subunit of cloned epithelial Na+ channels (ENaC) was studied in planar lipid bilayers. Two pairs of in vitro translated proteins were employed in combinatorial experiments: 1) wild-type (WT) and an N-terminally truncated αΔN-rENaC that displays accelerated kinetics (τo = 32 ± 13 ms, τc = 42 ± 11 ms), as compared with the WT channel (τc1 = 18 ± 8 ms, τc2 = 252 ± 31 ms, and τo = 157 ± 43 ms); and 2) WT and an amiloride binding mutant, αΔ278–283-rENaC. The channels that formed in a αWT:αΔN mixture fell into two groups: one with τo and τc that corresponded to those exhibited by the αΔN-rENaC alone, and another with a double-exponentially distributed closed time and a single-exponentially distributed open time that corresponded to the αWT-rENaC alone. Five channel subtypes with distinct sensitivities to amiloride were found in a 1αWT:1αΔ278–283 protein mixture. Statistical analyses of the distributions of channel phenotypes observed for either set of the WT:mutant combinations suggest a tetrameric organization of α-subunits as a minimal model for the core conduction element in ENaCs

    Membrane Trafficking of the Cystic Fibrosis Gene Product, Cystic Fibrosis Transmembrane Conductance Regulator, Tagged with Green Fluorescent Protein in Madin-Darby Canine Kidney Cells

    No full text
    The mechanism by which cAMP stimulates cystic fibrosis transmembrane conductance regulator (CFTR)-mediated chloride (Cl−) secretion is cell type-specific. By using Madin-Darby canine kidney (MDCK) type I epithelial cells as a model, we tested the hypothesis that cAMP stimulates Cl− secretion by stimulating CFTR Cl− channel trafficking from an intracellular pool to the apical plasma membrane. To this end, we generated a green fluorescent protein (GFP)-CFTR expression vector in which GFP was linked to the N terminus of CFTR. GFP did not alter CFTR function in whole cell patch-clamp or planar lipid bilayer experiments. In stably transfected MDCK type I cells, GFP-CFTR localization was substratum-dependent. In cells grown on glass coverslips, GFP-CFTR was polarized to the basolateral membrane, whereas in cells grown on permeable supports, GFP-CFTR was polarized to the apical membrane. Quantitative confocal fluorescence microscopy and surface biotinylation experiments demonstrated that cAMP did not stimulate detectable GFP-CFTR translocation from an intracellular pool to the apical membrane or regulate GFP-CFTR endocytosis. Disruption of the microtubular cytoskeleton with colchicine did not affect cAMP-stimulated Cl− secretion or GFP-CFTR expression in the apical membrane. We conclude that cAMP stimulates CFTR-mediated Cl− secretion in MDCK type I cells by activating channels resident in the apical plasma membrane
    corecore