20 research outputs found

    Testing isosource : stable isotope analysis of a tropical fishery with diverse organic matter sources

    Get PDF
    Author Posting. © Ecological Society of America, 2006. This article is posted here by permission of Ecological Society of America for personal use, not for redistribution. The definitive version was published in Ecology 87 (2006): 326–333, doi:10.1890/05-0721.We sampled consumers and organic matter sources (mangrove litter, freshwater swamp-forest litter, seagrasses, seagrass epiphytes, and marine particulate organic matter [MPOM]) from four estuaries on Kosrae, Federated States of Micronesia for stable isotope (δ13C and δ34S) analysis. Unique mixing solutions cannot be calculated in a dual-isotope, five-endmember scenario, so we tested IsoSource, a recently developed statistical procedure that calculates ranges in source contributions (i.e., minimum and maximum possible). Relatively high minimum contributions indicate significant sources, while low maxima indicate otherwise. Litter from the two forest types was isotopically distinguishable but had low average minimum contributions (0–8% for mangrove litter and 0% for swamp-forest litter among estuaries). Minimum contribution of MPOM was also low, averaging 0–13% among estuaries. Instead, local marine sources dominated contributions to consumers. Minimum contributions of seagrasses averaged 8–47% among estuaries (range 0–88% among species). Minimum contributions of seagrass epiphytes averaged 5–27% among estuaries (range 0–69% among species). IsoSource enabled inclusion of five organic matter sources in our dual-isotope analysis, ranking trophic importance as follows: seagrasses > seagrass epiphytes > MPOM > mangrove forest > freshwater swamp-forest. IsoSource is thus a useful step toward understanding which of multiple organic matter sources support food webs; more detailed work is necessary to identify unique solutions.This research was funded through a research joint venture agreement between the USDA and CMP at the University of Georgia

    Managing Critical Transition Zones

    Get PDF
    ABSTRACT Ecosystems that function as critical transition zones (CTZs) among terrestrial, freshwater, and marine habitats are closely connected to the ecosystems adjacent to them and are characterized by a rapid flux of materials and organisms. CTZs play various roles, including mediating water flows, accumulating sediments and organic matter, processing nutrients, and providing opportunities for recreation. They are particularly difficult to manage because they tend to be small, albeit important, components of large watersheds, and managers may not have control over the entire landscape. Moreover, they are often the focus of intensive human activity. Consequently, CTZs are critically important zones, and their preservation and protection are likely to require unique collaboration among scientists, managers, and stakeholders. Scientists can learn a great deal from the study of these ecosystems, taking advantage of small size and the importance of fluxes, but a good understanding of adaptive management strategies is needed to establish a dialogue with managers and stakeholders on technical and management issues. An understanding of risk analysis is also important to help set meaningful goals and establish logical strategies that include all of the interested parties. Successful restoration of a CTZ is the best test of the quality of knowledge about its structure and function. Much has already been learned about coastal CTZs through restoration projects, and the large number of such projects involving riparian CTZs in particular suggests that there is considerable opportunity for fruitful collaborations between scientists and managers

    Ecosystem Resilience and Threshold Response in the Galápagos Coastal Zone

    Get PDF
    Background: The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr⁻¹ at the end of the 21st century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system?Methodology/Principal Findings: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ13C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat.Conclusions/Significance: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast and slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.</p

    Characteristics of Scylla spp. (Decapoda: Portunidae) and Their Mangrove Forest Habitat in Ngaremeduu Bay, Republic of Palau.

    Get PDF
    v. ill. 23 cm.QuarterlyThree species of mangrove crabs (Scylla spp.) were captured in live traps in Ngaremeduu Bay on the island of Babeldaob, Republic of Palau. Most were S. serrata, but one individual each of S. olivacea and S. paramamosain was also trapped, establishing existence of a biogeographic gradient in mangrove crab species diversity across the Micronesian archipelago. Species composition of mangrove trees along transects around the bay and along the three major tributaries was similar to that of other Micronesian islands, although trees are smaller in Palau. For 17 months in 1999–2000, crabs were trapped in the bay and captured by hand along the transects; they were trapped again for 1 month in 2004. Characteristics of the crabs and of burrows encountered along the transects suggested that only S. serrata was captured in 1999–2000 and that population density of this species was 40 crabs ha_1. Carapace widths for the 159 crabs captured during the entire study did not differ significantly over the 4-yr span, and averaged 153 mm for males and 137 mm for females. However, average carapace widths for the largest quartile of crabs declined significantly from 174 mm to 171 mm across the study period. Catch per unit effort was 0.28 crab per trap night in 1999–2000 and 0.45 in 2004. Although large crabs are still available in Ngaremeduu Bay, current regulations may not be sufficient to keep populations from decreasing gradually in size, especially in the face of increasing harvest pressure on the island of Babeldaob

    Population Characteristics of the Mangrove Crab Scylla serrata (Decapoda: Portunidae) in Kosrae, Federated States of Micronesia: Effects of Harvest and Implications for Management.

    Get PDF
    v. ill. 23 cm.QuarterlyApparent declines in abundance of mangrove crabs Scylla serrata (Forsska°l, 1755) in Kosrae, Federated States of Micronesia, have prompted concern regarding long-term persistence of this important cultural and economic resource. To support development of effective management strategies, we gathered basic biological information about mangrove crabs on this island, where S. serrata is the only mangrove crab species present. In particular, we were interested in understanding movement patterns and evaluating spatial variation in population structure. Many population characteristics, including estimated life span, ontogenetic shifts in habitat use, sex-specific allometric relationships, male-biased sex ratios, and evidence for limited (<2 km) alongshore movement, are similar to those reported elsewhere in the range of the species. Therefore, insights from S. serrata populations elsewhere might usefully inform management of the species on Kosrae. Moreover, information reported in this study, for which there is no ambiguity about species identification, has broader relevance. Spatial variation in size structure of the population appears to be driven by variable harvest pressure that reflects distribution of the human population and location of emerging commercial harvest operations. Effective management of mangrove crabs is therefore likely to benefit from application of size-based or sex-based restrictions on harvest and might usefully incorporate spatially explicit strategies, such as partial or complete reserves. Development and implementation of effective management will necessarily depend on cultural as well as scientific information
    corecore