57 research outputs found
Recommended from our members
The Large Scale Roll-Out of Electric Vehicles
The UK government has set the ambitious targets of 20 and 50% reduction in greenhouse gas emissions by 2020 and 2050 respectively. The transport sector accounts for 21% of total CO2 emissions in the UK and can, therefore, be important for achieving the emissions reduction targets. Within the transport sector, electric vehicles (EV) are considered as one of the important mitigation options. However the effect of EVs on emissions and the electricity sector is subject to debate. We use scenario analysis to investigate the emission reduction potential of EVs and their interaction with electricity sector. We show that managing the charging patterns could reduce adverse effects of EVs on the electricity sector while the number of EVs remains the factor affecting the mitigation potential. Our findings indicate that in the UK, by 2030, EVs could result in up to 32% emissions reduction compared to advanced internal combustion engines. We also found that the need for new electricity generation and distribution capacity to meet the conventional electricity demand and demand from EVs could be reduced by up to 12% from 70.6 to 61.8 GW if the EVメs electricity demand is managed
Bostonia: The Boston University Alumni Magazine. Volume 10
Founded in 1900, Bostonia magazine is Boston University's main alumni publication, which covers alumni and student life, as well as university activities, events, and programs
Soy intake is associated with lowering blood pressure in adults:A systematic review and meta-analysis of randomized double-blind placebo-controlled trials
Background: Soy has several beneficial effects on cardiovascular disease (CVD); however, results of clinical trial studies are equivocal. Thus, the present study sought to discern the efficacy of soy intake on blood pressure. Methods: The search process was conducted in PubMed, Scopus, Web of Science, and Cochrane Library, to ascertain studies investigating the efficacy of soy intake on blood pressure in adults, published up to June 2020. A random-effects model was applied to pool mean difference and 95 confidence interval (CI). Begg's and Egger's methods were conducted to assess publication bias. Results: Pooled effects from 17 effect sizes revealed a significant improvement in systolic blood pressure (SBP) (�1.70; �3.34 to �0.06 mmHg; I2 = 45.4 ) and diastolic blood pressure (DBP) (�1.27; �2.36 to �0.19 mmHg, I2 = 43.9 ) following soy consumption, in comparison with controls. Subgroup analysis demonstrated a reduction in both SBP and DBP in younger participants with lower baseline DBP and intervention durations of <16 weeks. Conclusion: Our results suggest that soy intake is associated with an ameliorating effect on blood pressure in adults. © 202
Interventions aimed at increasing research use in nursing: a systematic review
<p>Abstract</p> <p>Background</p> <p>There has been considerable interest recently in developing and evaluating interventions to increase research use by clinicians. However, most work has focused on medical practices; and nursing is not well represented in existing systematic reviews. The purpose of this article is to report findings from a systematic review of interventions aimed at increasing research use in nursing.</p> <p>Objective</p> <p>To assess the evidence on interventions aimed at increasing research use in nursing.</p> <p>Methods</p> <p>A systematic review of research use in nursing was conducted using databases (Medline, CINAHL, Healthstar, ERIC, Cochrane Central Register of Controlled Trials, and Psychinfo), grey literature, ancestry searching (Cochrane Database of Systematic Reviews), key informants, and manual searching of journals. Randomized controlled trials and controlled before- and after-studies were included if they included nurses, if the intervention was explicitly aimed at increasing research use or evidence-based practice, and if there was an explicit outcome to research use. Methodological quality was assessed using pre-existing tools. Data on interventions and outcomes were extracted and categorized using a pre-established taxonomy.</p> <p>Results</p> <p>Over 8,000 titles were screened. Three randomized controlled trials and one controlled before- and after-study met the inclusion criteria. The methodological quality of included studies was generally low. Three investigators evaluated single interventions. The most common intervention was education. Investigators measured research use using a combination of surveys (three studies) and compliance with guidelines (one study). Researcher-led educational meetings were ineffective in two studies. Educational meetings led by a local opinion leader (one study) and the formation of multidisciplinary committees (one study) were both effective at increasing research use.</p> <p>Conclusion</p> <p>Little is known about how to increase research use in nursing, and the evidence to support or refute specific interventions is inconclusive. To advance the field, we recommend that investigators: (1) use theoretically informed interventions to increase research use, (2) measure research use longitudinally using theoretically informed and psychometrically sound measures of research use, as well as, measuring patient outcomes relevant to the intervention, and (3) use more robust and methodologically sound study designs to evaluate interventions. If investigators aim to establish a link between using research and improved patient outcomes they must first identify those interventions that are effective at increasing research use.</p
Intrauterine environments and breast cancer risk: meta-analysis and systematic review
INTRODUCTION: Various perinatal factors, including birth weight, birth order, maternal age, gestational age, twin status, and parental smoking, have been postulated to affect breast cancer risk in daughters by altering the hormonal environment of the developing fetal mammary glands. Despite ample biologic plausibility, epidemiologic studies to date have yielded conflicting results. We investigated the associations between perinatal factors and subsequent breast cancer risk through meta-analyses. METHODS: We reviewed breast cancer studies published from January 1966 to February 2007 that included data on birth weight, birth order, maternal age, gestational age, twin status, and maternal or paternal smoking. Meta-analyses using random effect models were employed to summarize the results. RESULTS: We found that heavier birth weights were associated with increased breast cancer risk, with studies involving five categories of birth weight identifying odds ratios (ORs) of 1.24 (95% confidence interval [CI] 1.04 to 1.48) for 4,000 g or more and 1.15 (95% CI 1.04 to 1.26) for 3,500 g to 3,999 g, relative to a birth weight of 2,500 to 2,599 g. These studies provided no support for a J-shaped relationship of birthweight to risk. Support for an association with birthweight was also derived from studies based on three birth weight categories (OR 1.15 [95% CI 1.01 to 1.31] for > or =4,000 g relative to or =3,000 g relative to <3,000 g). Women born to older mothers and twins were also at some increased risk, but the results were heterogeneous across studies and publication years. Birth order, prematurity, and maternal smoking were unrelated to breast cancer risk. CONCLUSION: Our findings provide some support for the hypothesis that in utero exposures reflective of higher endogenous hormone levels could affect risk for development of breast cancer in adulthood
A framework for human microbiome research
A variety of microbial communities and their genes (the microbiome) exist throughout the human body, with fundamental roles in human health and disease. The National Institutes of Health (NIH)-funded Human Microbiome Project Consortium has established a population-scale framework to develop metagenomic protocols, resulting in a broad range of quality-controlled resources and data including standardized methods for creating, processing and interpreting distinct types of high-throughput metagenomic data available to the scientific community. Here we present resources from a population of 242 healthy adults sampled at 15 or 18 body sites up to three times, which have generated 5,177 microbial taxonomic profiles from 16S ribosomal RNA genes and over 3.5 terabases of metagenomic sequence so far. In parallel, approximately 800 reference strains isolated from the human body have been sequenced. Collectively, these data represent the largest resource describing the abundance and variety of the human microbiome, while providing a framework for current and future studies
Structure, function and diversity of the healthy human microbiome
Author Posting. © The Authors, 2012. This article is posted here by permission of Nature Publishing Group. The definitive version was published in Nature 486 (2012): 207-214, doi:10.1038/nature11234.Studies of the human microbiome have revealed that even healthy individuals differ remarkably in the microbes that occupy habitats such as the gut, skin and vagina. Much of this diversity remains unexplained, although diet, environment, host genetics and early microbial exposure have all been implicated. Accordingly, to characterize the ecology of human-associated microbial communities, the Human Microbiome Project has analysed the largest cohort and set of distinct, clinically relevant body habitats so far. We found the diversity and abundance of each habitat’s signature microbes to vary widely even among healthy subjects, with strong niche specialization both within and among individuals. The project encountered an estimated 81–99% of the genera, enzyme families and community configurations occupied by the healthy Western microbiome. Metagenomic carriage of metabolic pathways was stable among individuals despite variation in community structure, and ethnic/racial background proved to be one of the strongest associations of both pathways and microbes with clinical metadata. These results thus delineate the range of structural and functional configurations normal in the microbial communities of a healthy population, enabling future characterization of the epidemiology, ecology and translational applications of the human microbiome.This research was supported in
part by National Institutes of Health grants U54HG004969 to B.W.B.; U54HG003273
to R.A.G.; U54HG004973 to R.A.G., S.K.H. and J.F.P.; U54HG003067 to E.S.Lander;
U54AI084844 to K.E.N.; N01AI30071 to R.L.Strausberg; U54HG004968 to G.M.W.;
U01HG004866 to O.R.W.; U54HG003079 to R.K.W.; R01HG005969 to C.H.;
R01HG004872 to R.K.; R01HG004885 to M.P.; R01HG005975 to P.D.S.;
R01HG004908 to Y.Y.; R01HG004900 to M.K.Cho and P. Sankar; R01HG005171 to
D.E.H.; R01HG004853 to A.L.M.; R01HG004856 to R.R.; R01HG004877 to R.R.S. and
R.F.; R01HG005172 to P. Spicer.; R01HG004857 to M.P.; R01HG004906 to T.M.S.;
R21HG005811 to E.A.V.; M.J.B. was supported by UH2AR057506; G.A.B. was
supported by UH2AI083263 and UH3AI083263 (G.A.B., C. N. Cornelissen, L. K. Eaves
and J. F. Strauss); S.M.H. was supported by UH3DK083993 (V. B. Young, E. B. Chang,
F. Meyer, T. M. S., M. L. Sogin, J. M. Tiedje); K.P.R. was supported by UH2DK083990 (J.
V.); J.A.S. and H.H.K. were supported by UH2AR057504 and UH3AR057504 (J.A.S.);
DP2OD001500 to K.M.A.; N01HG62088 to the Coriell Institute for Medical Research;
U01DE016937 to F.E.D.; S.K.H. was supported by RC1DE0202098 and
R01DE021574 (S.K.H. and H. Li); J.I. was supported by R21CA139193 (J.I. and
D. S. Michaud); K.P.L. was supported by P30DE020751 (D. J. Smith); Army Research
Office grant W911NF-11-1-0473 to C.H.; National Science Foundation grants NSF
DBI-1053486 to C.H. and NSF IIS-0812111 to M.P.; The Office of Science of the US
Department of Energy under Contract No. DE-AC02-05CH11231 for P.S. C.; LANL
Laboratory-Directed Research and Development grant 20100034DR and the US
Defense Threat Reduction Agency grants B104153I and B084531I to P.S.C.; Research
Foundation - Flanders (FWO) grant to K.F. and J.Raes; R.K. is an HHMI Early Career
Scientist; Gordon&BettyMoore Foundation funding and institutional funding fromthe
J. David Gladstone Institutes to K.S.P.; A.M.S. was supported by fellowships provided by
the Rackham Graduate School and the NIH Molecular Mechanisms in Microbial
Pathogenesis Training Grant T32AI007528; a Crohn’s and Colitis Foundation of
Canada Grant in Aid of Research to E.A.V.; 2010 IBM Faculty Award to K.C.W.; analysis
of the HMPdata was performed using National Energy Research Scientific Computing
resources, the BluBioU Computational Resource at Rice University
Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial
SummaryBackground Azithromycin has been proposed as a treatment for COVID-19 on the basis of its immunomodulatoryactions. We aimed to evaluate the safety and efficacy of azithromycin in patients admitted to hospital with COVID-19.Methods In this randomised, controlled, open-label, adaptive platform trial (Randomised Evaluation of COVID-19Therapy [RECOVERY]), several possible treatments were compared with usual care in patients admitted to hospitalwith COVID-19 in the UK. The trial is underway at 176 hospitals in the UK. Eligible and consenting patients wererandomly allocated to either usual standard of care alone or usual standard of care plus azithromycin 500 mg once perday by mouth or intravenously for 10 days or until discharge (or allocation to one of the other RECOVERY treatmentgroups). Patients were assigned via web-based simple (unstratified) randomisation with allocation concealment andwere twice as likely to be randomly assigned to usual care than to any of the active treatment groups. Participants andlocal study staff were not masked to the allocated treatment, but all others involved in the trial were masked to theoutcome data during the trial. The primary outcome was 28-day all-cause mortality, assessed in the intention-to-treatpopulation. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936.Findings Between April 7 and Nov 27, 2020, of 16 442 patients enrolled in the RECOVERY trial, 9433 (57%) wereeligible and 7763 were included in the assessment of azithromycin. The mean age of these study participants was65·3 years (SD 15·7) and approximately a third were women (2944 [38%] of 7763). 2582 patients were randomlyallocated to receive azithromycin and 5181 patients were randomly allocated to usual care alone. Overall,561 (22%) patients allocated to azithromycin and 1162 (22%) patients allocated to usual care died within 28 days(rate ratio 0·97, 95% CI 0·87–1·07; p=0·50). No significant difference was seen in duration of hospital stay (median10 days [IQR 5 to >28] vs 11 days [5 to >28]) or the proportion of patients discharged from hospital alive within 28 days(rate ratio 1·04, 95% CI 0·98–1·10; p=0·19). Among those not on invasive mechanical ventilation at baseline, nosignificant difference was seen in the proportion meeting the composite endpoint of invasive mechanical ventilationor death (risk ratio 0·95, 95% CI 0·87–1·03; p=0·24).Interpretation In patients admitted to hospital with COVID-19, azithromycin did not improve survival or otherprespecified clinical outcomes. Azithromycin use in patients admitted to hospital with COVID-19 should be restrictedto patients in whom there is a clear antimicrobial indication
Challenges and solutions for climate change
The latest scientific knowledge on climate change indicates that higher greenhouse gas concentrations in the atmosphere through unchecked emissions will provoke severe climate change and ocean acidification threatening environmental structures on which humanity relies. Climate change therefore poses major socio-economic, technical and environmental challenges which will have serious impacts on countries’ pathways towards sustainable development. As a result, climate change and sustainable development have increasingly become interlinked. A changing climate makes achieving Millennium Development Goals more difficult and expensive, so there is every reason to achieve development goals with low greenhouse gas emissions. This leads to the following five challenges discussed by Challenges and Solutions for Climate Change: To place climate negotiations in the wider context of sustainability, equity and social change so that development benefits can be maximised at the same time as decreasing greenhouse gas emissions. To select technologies or measures for climate change mitigation and adaptation based on countries’ sustainable development and climate goals. To create low greenhouse gas emission and climate resilient strategies and action plans in order to accelerate innovation for sustainable development and climate goals on the scale and timescale required within countries. To rationalize the current directions in international climate policy making in order to provide coherent and efficient support to developing countries in devising and implementing strategies and action plans for low emission technology transfers to deliver climate and sustainable development goals. To facilitate development of an international framework for financial resources in order to support technology development and transfer, improve enabling environments for innovation, address equity issues such as poor people’s energy access, and make implementation of activities possible at the desired scale within the country. The solutions presented in Challenges and Solutions for Climate Change show how ambitious measures can be undertaken which are fully in line with domestic interests, both in developing and in developed countries, and how these measures can be supported through the international mechanisms
- …