92 research outputs found

    Climate Change and Faith: Why Facts Are Not Enough

    Get PDF
    When we hear people objecting to climate change, they often use science-y or even religious-y sounding arguments. It’s just a natural cycle, some say, or God is in control, so humans can’t affect something as big as our planet.” Yet if the conversation continues a few minutes longer, it rapidly becomes apparent that the real objections have nothing to do with lack of information or knowledge or belief. Our attitudes towards climate change are primarily the result of where we fall on the political spectrum, and our corresponding aversion to what we perceive to be the only solution: allowing the government to destroy the economy, impose unfair regulations, and rob us of our personal liberties. Is there solid evidence that climate is changing and humans are responsible? Are there solutions that are economically viable and appealing across the political spectrum? And why would any of us even care? Join Katharine Hayhoe as she untangles the complex science behind global warming and highlights the key role our values can play in shaping our conversations on this crucial topic.https://scholarworks.uni.edu/leopold/1006/thumbnail.jp

    Climate Change in the Piscataqua/Great Bay Region: Past, Present, and Future

    Get PDF
    Earth ’s climate changes. It always has and always will. However, an extensive body of scientific evidence indicates that human activities are now a significant force driving change in the Earth’s climate system. This report describes how the climate of the Piscataqua/Great Bay region of coastal New Hampshire in the United States has changed over the past century and how the future climate of the region will be affected by human activities that are warming the planet. Overall, the region has been getting warmer and wetter over the last century, and the rate of change has increased over the last four decades. To generate future climate projections for the region, simulated temperature and precipitation from four general circulation models were fitted to local, long-term weather observations. Unknowns regarding future fossil fuel consumption were accounted for by using two future emissions scenarios. As greenhouse gases continue to accumulate in the atmosphere, temperatures will rise, extreme heat days are projected to occur more often and will be hotter, extreme cold temperatures are projected to occur less often, and cold days will be warmer.. Annual average precipitation is projected to increase 12 to 17% by end-of-century and the region can expect to see more extreme precipitation events in the future. Tidal gauge data indicates relative sea level at Portsmouth has risen 0.7 inches per decade over the past eight decades. Projected sea level rise of 1.7 to 6.3 feet will result in higher storm surges and more frequent flooding in coastal New Hampshire

    Climate Change in Northern New Hampshire: Past, Present and Future

    Get PDF
    EARTH’S CLIMATE CHANGES. It always has and always will. However, an extensive and growing body of scientific evidence indicates that human activities—including the burning of fossil fuel (coal, oil, and natural gas) for energy, clearing of forested lands for agriculture, and raising livestock—are now the primary force driving change in the Earth’s climate system. This report describes how the climate of northern New Hampshire has changed over the past century and how the future climate of the region will be affected by a warmer planet due to human activities

    Climate Change in Southern New Hampshire: Past, Present and Future

    Get PDF
    EARTH’S CLIMATE CHANGES. It always has and always will. However, an extensive and growing body of scientific evidence indicates that human activities—including the burning of fossil fuel (coal, oil, and natural gas) for energy, clearing of forested lands for agriculture, and raising livestock—are now the primary force driving change in the Earth’s climate system. This report describes how the climate of southern New Hampshire has changed over the past century and how the future climate of the region will be affected by a warmer planet due to human activities

    Climate Change In The Casco Bay Watershed: Past, Present, And Future

    Get PDF
    This report describes how the climate of Casco Bay watershed in Maine has changed over the past century and how the future climate of the region is likely to be affected by human emissions of heat-trapping greenhouse gases that are warming the planet. Overall, the region has been getting warmer and wetter over the last century, and these trends have increased over the last four decades. To generate future projections for Portland, Farmington, and Lewiston, simulated temperature and precipitation from four climate models were fitted to local, long-term weather observations. Unknowns regarding fossil fuel consumption were accounted for by using two future scenarios. The scenarios describe climate in terms of temperature and precipitation for three future periods: the near-term, 2010-2039, mid-century, 2040-2069, and end-of-century, 2070-2099. All changes are relative to a historical baseline, 1970-1999. Some future changes are inevitable, so smart choices must be made to ensure our society and our environment will be able to adapt to coming change. But with prompt action, many of the most extreme consequences of climate change could be avoided or their worst impacts reduced

    Modeling potential hydrochemical responses to climate change and increasing CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC)

    Get PDF
    Dynamic hydrochemical models are useful tools for understanding and predicting the interactive effects of climate change, atmospheric CO2, and atmospheric deposition on the hydrology and water quality of forested watersheds. We used the biogeochemical model, PnET-BGC, to evaluate the effects of potential future changes in temperature, precipitation, solar radiation, and atmospheric CO2 on pools, concentrations, and fluxes of major elements at the Hubbard Brook Experimental Forest in New Hampshire, United States. Future climate projections used to run PnET-BGC were generated specifically for the Hubbard Brook Experimental Forest with a statistical technique that downscales climate output (e.g., air temperature, precipitation, solar radiation) from atmosphere-ocean general circulation models (AOGCMs) to a finer temporal and spatial resolution. These climate projections indicate that over the twenty-first century, average air temperature will increase at the site by 1.7 degrees C to 6.5 degrees C with simultaneous increases in annual average precipitation ranging from 4 to 32 cm above the long-term mean (1970–2000). PnET-BGC simulations under future climate change show a shift in hydrology characterized by later snowpack development, earlier spring discharge (snowmelt), greater evapotranspiration, and a slight increase in annual water yield (associated with CO2 effects on vegetation). Model results indicate that under elevated temperature, net soil nitrogen mineralization and nitrification markedly increase, resulting in acidification of soil and stream water, thereby altering the quality of water draining from forested watersheds. Invoking a CO2 fertilization effect on vegetation under climate change substantially mitigates watershed nitrogen loss, highlighting the need for a more thorough understanding of CO2 effects on forest vegetation

    Climate change scenarios for the California region

    Get PDF
    To investigate possible future climate changes in California, a set of climate change model simulations was selected and evaluated. From the IPCC Fourth Assessment, simulations of twenty-first century climates under a B1 (low emissions) and an A2 (a medium-high emissions) emissions scenarios were evaluated, along with occasional comparisons to the A1fi (high emissions) scenario. The climate models whose simulations were the focus of the present study were from the Parallel Climate Model (PCM1) from NCAR and DOE, and the NOAA Geophysical Fluid Dynamics Laboratory CM2.1 model (GFDL). These emission scenarios and attendant climate simulations are not “predictions,” but rather are a purposely diverse set of examples from among the many plausible climate sequences that might affect California in the next century. Temperatures over California warm significantly during the twenty-first century in each simulation, with end-of-century temperature increases from approximately +1.5°C under the lower emissions B1 scenario in the less responsive PCM1 to +4.5°C in the higher emissions A2 scenario within the more responsive GFDL model. Three of the simulations (all except the B1 scenario in PCM1) exhibit more warming in summer than in winter. In all of the simulations, most precipitation continues to occur in winter. Relatively small (less than ~10%) changes in overall precipitation are projected. The California landscape is complex and requires that model information be parsed out onto finer scales than GCMs presently offer. When downscaled to its mountainous terrain, warming has a profound influence on California snow accumulations, with snow losses that increase with warming. Consequently, snow losses are most severe in projections by the more responsive model in response to the highest emissions

    Methane and Nitrous Oxide Emissions from Natural Sources

    Get PDF

    Climate Change in the Casco Bay Watershed: Past, Present, and Future

    Get PDF
    This report describes how the climate of Casco Bay watershed in Maine has changed over the past century and how the future climate of the region is likely to be affected by human emissions of heat-trapping greenhouse gases that are warming the planet. Overall, the region has been getting warmer and wetter over the last century, and these trends have increased over the last four decades. To generate future projections for Portland, Farmington, and Lewiston, simulated temperature and precipitation from four climate models were fitted to local, long-term weather observations. Unknowns regarding fossil fuel consumption were accounted for by using two future scenarios. The scenarios describe climate in terms of temperature and precipitation for three future periods: the near-term, 2010-2039, mid-century, 2040-2069, and end-of-century, 2070-2099. All changes are relative to a historical baseline, 1970-1999. Some future changes are inevitable, so smart choices must be made to ensure our society and our environment will be able to adapt to coming change. But with prompt action, many of the most extreme consequences of climate change could be avoided or their worst impacts reduced
    • …
    corecore