11 research outputs found

    The phase structure of the Polyakov--quark-meson model beyond mean field

    Get PDF
    The Polyakov-extended quark-meson model (PQM) is investigated beyond mean-field. This represents an important step towards a fully dynamical QCD computation. Both the quantum fluctuations to the matter sector and the back-reaction of the matter fluctuations to the QCD Yang-Mills sector are included. Results on the chiral and confinement-deconfinement crossover/phase transition lines and the location of a possible critical endpoint are presented. Moreover, thermodynamic quantities such as the pressure and the quark density are discussed.Comment: 12 pages, 11 figure

    The Role of Clonal Evolution on Progression, Blood Parameters, and Response to Therapy in Multiple Myeloma

    Get PDF
    IntroductionA variety of biomarkers are considered for diagnosis (e.g., ÎČ2-microgobulin, albumin, or LDH) and prognosis [e.g., cytogenetic aberrations detected by fluorescence in situ hybridization (FISH)] of multiple myeloma (MM). More recently, clonal evolution has been established as key. Little is known on the clinical implications of clonal evolution.MethodsWe performed in-depth analyses of 25 patients with newly diagnosed MM with respect to detailed clinical information analyzing blood samples collected at several time points during follow-up (median follow-up: 3.26 years since first diagnosis). We split our cohort into two subgroups: with and without new FISH clones developing in the course of disease.ResultsEach subgroup showed a characteristic chromosomal profile. Forty-three percent of patients had evidence of appearing new clones. The patients with new clones showed an increased number of translocations affecting chromosomes 14 (78% vs. 33%; p = 0.0805) and 11, and alterations in chromosome 4 (amplifications and translocations). New clones, on the contrary, were characterized by alterations affecting chromosome 17. Subsequent to the development of the new clone, 6 out of 9 patients experienced disease progression compared to 3 out of 12 for patients without new clones. Duration of the therapy applied for the longest time was significantly shorter within the group of patients developing new clones (median: 273 vs. 406.5 days; p = 0.0465).DiscussionWe demonstrated that the development of new clones, carrying large-scale alterations, was associated with inferior disease course and shorter response to therapy, possibly affecting progression-free survival and overall survival as well. Further studies evaluating larger cohorts are necessary for the validation of our results

    The genomic and transcriptional landscape of primary central nervous system lymphoma

    Get PDF
    Primary lymphomas of the central nervous system (PCNSL) are mainly diffuse large B-cell lymphomas (DLBCLs) confined to the central nervous system (CNS). Molecular drivers of PCNSL have not been fully elucidated. Here, we profile and compare the whole-genome and transcriptome landscape of 51 CNS lymphomas (CNSL) to 39 follicular lymphoma and 36 DLBCL cases outside the CNS. We find recurrent mutations in JAK-STAT, NFkB, and B-cell receptor signaling pathways, including hallmark mutations in MYD88 L265P (67%) and CD79B (63%), and CDKN2A deletions (83%). PCNSLs exhibit significantly more focal deletions of HLA-D (6p21) locus as a potential mechanism of immune evasion. Mutational signatures correlating with DNA replication and mitosis are significantly enriched in PCNSL. TERT gene expression is significantly higher in PCNSL compared to activated B-cell (ABC)-DLBCL. Transcriptome analysis clearly distinguishes PCNSL and systemic DLBCL into distinct molecular subtypes. Epstein-Barr virus (EBV)+ CNSL cases lack recurrent mutational hotspots apart from IG and HLA-DRB loci. We show that PCNSL can be clearly distinguished from DLBCL, having distinct expression profiles, IG expression and translocation patterns, as well as specific combinations of genetic alterations

    Educating parents about the vaccination status of their children: A user-centered mobile application

    Get PDF
    Parents are often uncertain about the vaccination status of their children. In times of vaccine hesitancy, vaccination programs could benefit from active patient participation. The Vaccination App (VAccApp) was developed by the Vienna Vaccine Safety Initiative, enabling parents to learn about the vaccination status of their children, including 25 different routine, special indication and travel vaccines listed in the WHO Immunization Certificate of Vaccination (WHO-ICV). Between 2012 and 2014, the VAccApp was validated in a hospital-based quality management program in Berlin, Germany, in collaboration with the Robert Koch Institute. Parents of 178 children were asked to transfer the immunization data of their children from the WHO-ICV into the VAccApp. The respective WHO-ICV was photocopied for independent, professional data entry (gold standard). Demonstrating the status quo in vaccine information reporting, a Recall Group of 278 parents underwent structured interviews for verbal immunization histories, without the respective WHO-ICV. Only 9% of the Recall Group were able to provide a complete vaccination status; on average 39% of the questions were answered correctly. Using the WHO-ICV with the help of the VAccApp resulted in 62% of parents providing a complete vaccination status; on average 95% of the questions were answered correctly. After using the VAccApp, parents were more likely to remember key aspects of the vaccination history. User-friendly mobile applications empower parents to take a closer look at the vaccination record, thereby taking an active role in providing accurate vaccination histories. Parents may become motivated to ask informed questions and to keep vaccinations up-to-date

    Enabling Precision Medicine With Digital Case Classification at the Point-of-Care

    Get PDF
    Infectious and inflammatory diseases of the central nervous system are difficult to identify early. Case definitions for aseptic meningitis, encephalitis, myelitis, and acute disseminated encephalomyelitis (ADEM) are available, but rarely put to use. The VACC-Tool (Vienna Vaccine Safety Initiative Automated Case Classification-Tool) is a mobile application enabling immediate case ascertainment based on consensus criteria at the point-of-care. The VACC-Tool was validated in a quality management program in collaboration with the Robert-Koch-Institute. Results were compared to ICD-10 coding and retrospective analysis of electronic health records using the same case criteria. Of 68,921 patients attending the emergency room in 10/2010–06/2013, 11,575 were hospitalized, with 521 eligible patients (mean age: 7.6 years) entering the quality management program. Using the VACC-Tool at the point-of-care, 180/521 cases were classified successfully and 194/521 ruled out with certainty. Of the 180 confirmed cases, 116 had been missed by ICD-10 coding, 38 misclassified. By retrospective application of the same case criteria, 33 cases were missed. Encephalitis and ADEM cases were most likely missed or misclassified. The VACC-Tool enables physicians to ask the right questions at the right time, thereby classifying cases consistently and accurately, facilitating translational research. Future applications will alert physicians when additional diagnostic procedures are required

    Binning analysis: Estimation of CT, median values based on categorized QIFT readouts.

    No full text
    <p>The following QIFT categories were used: “Negative QIFT”: 0 to 1 (n = 333). “Low QIFT”: >1 to 100 (n = 254). “Moderate QIFT”: >100 to 199 (n = 56). “High QIFT”: >199 (n = 26).</p

    Quantitative influenza follow-up testing (QIFT)--a novel biomarker for the monitoring of disease activity at the point-of-care.

    Get PDF
    BACKGROUND: Influenza infections induce considerable disease burden in young children. Biomarkers for the monitoring of disease activity at the point-of-care (POC) are currently lacking. Recent methodologies for fluorescence-based rapid testing have been developed to provide improved sensitivities with the initial diagnosis. The present study aims to explore the utility of second-generation rapid testing during longitudinal follow-up of influenza patients (Rapid Influenza Follow-up Testing = RIFT). Signal/control fluorescent readouts (Quantitative Influenza Follow-up Testing = QIFT) are evaluated as a potential biomarker for the monitoring of disease activity at the POC. METHODS AND FINDINGS: RIFT (SOFIA) and QIFT were performed at the POC and compared to blinded RT-PCR at the National Reference Centre for Influenza. From 10/2011-4/2013, a total of 2048 paediatric cases were studied prospectively; 273 cases were PCR-confirmed for influenza. During follow-up, RIFT results turned negative either prior to PCR (68%), or simultaneously (30%). The first negative RIFT occurred after a median of 8 days with a median virus load (VL) of 5.6×10∧3 copies/ml and cycle threshold of 37, with no evidence of viral rebound. Binning analysis revealed that QIFT differentiated accurately between patients with low, medium and high viral titres. QIFT increase/decrease showed 88% agreement (sensitivity = 52%, specificity = 95%) with VL increase/decrease, respectively. QIFT-based viral clearance estimates showed similar values compared to PCR-based estimates. Variations in viral clearance rates were lower in treated compared to untreated patients. The study was limited by use of non-invasive, semi-quantitative nasopharyngeal samples. VL measurements below the limit of detection could not be quantified reliably. CONCLUSIONS: During follow-up, RIFT provides a first surrogate measure for influenza disease activity. A "switch" from positive to negative values may indicate a drop in viral load below a critical threshold, where rebound is no longer expected. QIFT may provide a useful tool for the monitoring of disease burden and viral clearance at the POC
    corecore