14 research outputs found

    Photon exchange and entanglement formation during the transmission through a rectangular quantum barrier

    Get PDF
    When a quantum particle traverses a rectangular potential created by a quantum field both photon exchange and entanglement between particle and field take place. We present analytic results for the transition amplitudes of any possible photon exchange processes for an incoming plane wave and initial Fock, thermal and coherent field states. We show that for coherent field states the entanglement correlates the particle's position to the photon number in the field instead of the particle's energy as usual. Besides entanglement formation, remarkable differences to the classical field treatment also appear with respect to the symmetry between photon emission and absorption, resonance effects and if the field initially occupies the vacuum state.Comment: 6 pages (double column), 6 figure

    Spin geometry of entangled qubits under bilocal decoherence modes

    Full text link
    The Lindblad generators of the master equation define which kind of decoherence happens in an open quantum system. We are working with a two qubit system and choose the generators to be projection operators on the eigenstates of the system and unitary bilocal rotations of them. The resulting decoherence modes are studied in detail. Besides the general solutions we investigate the special case of maximally entangled states - the Bell singlet states. The results are depicted in the so-called spin geometry picture which allows to illustrate the evolution of the (nonlocal) correlations stored in a certain state. The question for which conditions the path traced out in the geometric picture depends only on the relative angle between the bilocal rotations is addressed.Comment: 12 pages, 3 figure

    Energy entanglement in neutron interferometry

    Get PDF
    Entanglement between degrees of freedom, namely between the spin, path and (total) energy degrees of freedom, for single neutrons is exploited. We implemented a triply entangled Greenberger-Horne-Zeilinger(GHZ)-like state and coherently manipulated relative phases of two-level quantum subsystems. An inequality derived by Mermin was applied to analyze the generated GHZ-like state: we determined the four expectation values and finally obtained M=2.558 +/- 0.004 which is clearly above the threshold of 2. This demonstrates the violation of a Mermin-like inequality for triply entangled GHZ-like state in a single-particle system, which, in turn, exhibits a clear inconsistency between noncontextual assumptions and quantum mechanics and confirms quantum contextuality.Comment: 4 pages, 3 figure

    Engineering of triply entangled states in a single-neutron system

    Full text link
    We implemented a triply entangled Greenberger-Horne-Zeilinger(GHZ)-like state and coherently manipulated the spin, path, and energy degrees of freedom in a single neutron system. The GHZ-like state was analyzed with an inequality derived by Mermin: we determined the four expectation values and finally obtained M = 2.558 +/- 0.004 > 2, which exhibits a clear violation of the noncontextual assumption and confirms quantum contextuality.Comment: 4 pages, 2figure

    Decoherence modes of entangled qubits within neutron interferometry

    Full text link
    We study two different decoherence modes for entangled qubits by considering a Liouville - von Neumann master equation. Mode A is determined by projection operators onto the eigenstates of the Hamiltonian and mode B by projectors onto rotated states. We present solutions for general and for Bell diagonal states and calculate for the later the mixedness and the amount of entanglement given by the concurrence. We propose a realization of the decoherence modes within neutron interferometry by applying fluctuating magnetic fields. An experimental test of the Kraus operator decomposition describing the evolution of the system for each mode is presented.Comment: 15 pages, 5 figure

    Kochen-Specker theorem studied with neutron interferometer

    Get PDF
    The Kochen-Specker theorem theoretically shows evidence of the incompatibility of noncontextual hidden variable theories with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality which is quite well tested in experiments by using Bell inequalities. Within neutron interferometry we performed an experimental test of the Kochen-Specker theorem with an inequality, which identifies quantum contextuality, by using spin-path entanglement in a single neutron system. Here entanglement is achieved not between different particles, but between degrees of freedom, i.e., between spin and path degree of freedom. Appropriate combinations of the spin analysis and the position of the phase shifter allow an experimental verification of the violation of an inequality of the Kochen-Specker theorem. The observed value of (2.291 +/- 0.008), which is above the threshold of 1, clearly shows that quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.Comment: 5 pages, 3 figure

    Berry phase in entangled systems: a proposed experiment with single neutrons

    Full text link
    The influence of the geometric phase, in particular the Berry phase, on an entangled spin-1/2 system is studied. We discuss in detail the case, where the geometric phase is generated only by one part of the Hilbert space. We are able to cancel the effects of the dynamical phase by using the ``spin-echo'' method. We analyze how the Berry phase affects the Bell angles and the maximal violation of a Bell inequality. Furthermore we suggest an experimental realization of our setup within neutron interferometry.Comment: 10 pages, 6 figures, Introduction extended, References adde

    Decoherence of entangled kaons and its connection to entanglement measures

    Get PDF
    We study the time evolution of the entangled kaon system by considering the Liouville - von Neumann equation with an additional term which allows for decoherence. We choose as generators of decoherence the projectors to the 2-particle eigenstates of the Hamiltonian. Then we compare this model with the data of the CPLEAR experiment and find in this way an upper bound on the strength λ\lambda of the decoherence. We also relate λ\lambda to an effective decoherence parameter ζ\zeta considered previously in literature. Finally we discuss our model in the light of different measures of entanglement, i.e. the von Neumann entropy SS, the entanglement of formation EE and the concurrence CC, and we relate the decoherence parameter ζ\zeta to the loss of entanglement: 1−E1 - E.Comment: comments and references added, 18 pages, 1 figur
    corecore