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When a quantum particle traverses a rectangular potential created by a quantum field both photon 
exchange and entanglement between particle and field take place. We present the full analytic solution 
of the Schrödinger equation of the composite particle–field system allowing investigation of these 
phenomena in detail and comparison to the results of a classical field treatment. Besides entanglement 
formation, remarkable differences also appear with respect to the symmetry between energy emission 
and absorption, resonance effects and if the field initially occupies the vacuum state.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The behavior of a quantum particle exposed to an oscillat-
ing rectangular potential has been studied by several authors un-
der different aspects involving, for example, tunneling time [1,2], 
chaotic signatures [3,4], appearance of Fano resonances [5], Floquet 
scattering for strong fields [6] and its absence for non-Hermitian 
potentials [7], chiral tunneling [8], charge pumping [9] and other 
photon assisted quantum transport phenomena in theory [10–12]
and experiment [13–18], recently realized particularly in quantum 
dots [19–22].

In these works, though the potential is treated as a classical 
quantity, the change of the particle’s energy is explicitly attributed 
to a photon emission or absorption process. Here, we introduce the 
photon concept in a formally correct way by describing the field 
generating the potential as quantized. Hence, we pursue the ideas 
which we started to elaborate in our previous publication [23]. 
There, we only arrived at an algebraic expression for the photon 
transition amplitudes whereas we now are able to present analytic 
results for all important initial field states enabling advanced in-
vestigations on photon exchange processes and entanglement for-
mation.

In order to compare semiclassical and fully-quantized treatment 
in our physical scenario, we recapitulate the results of the calcula-
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tion for a classical field (Section 2). Then, we turn to the quantized 
field treatment (Section 3). After presenting the general algebraic 
solution, we will explicitly evaluate the photon exchange probabili-
ties for an incoming plane wave and for a field being initially in an 
arbitrary Fock state, a thermal state or a coherent state. The spe-
cial cases of no initial photons (vacuum state) and of high initial 
photon numbers will be treated in particular.

2. Classical treatment of the field

The potential created by a classical field is a real-valued func-
tion of space and time in the particle’s Hamiltonian. Our con-
sidered potential oscillates harmonically in time and is spatially 
constant for 0 ≤ x < L and vanishes outside.

Ĥ =
{

p̂2

2m + V cos(ωt + ϕ), if 0 ≤ x < L (region II)
p̂2

2m , else (region I + III)
(1)

It therefore corresponds to a harmonically oscillating rectangular 
potential barrier (see Fig. 1).

The Schrödinger equation is solved in each of the three regions 
separately and then the wave functions are matched by continu-
ity conditions. A general approach based on Floquet theory [24]
can be found in [25]. Since the calculation of transmission and re-
flection coefficients requires the solution of an infinite dimensional 
equation system no closed analytic expression for them is feasible 
(see Chapter II of [25]). However, we can deduce from Chapter III 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. (Color online.) Spatial characteristics of the considered potential V . It is har-
monically oscillating in time with frequency ω in region II and vanishes elsewhere. 
Behind the barrier the incoming plane wave is split up into a coherent superposi-
tion of plane waves with energy En = E0 + nh̄ω.

of [25] that the transmission probability approaches one if the 
incoming energy E0 becomes large with respect to the potential 
amplitude V and the associated “photon” energy h̄ω (E0 � V , ̄hω). 
For the further, we restrict ourselves to incoming waves whose en-
ergy E0 is sufficiently high so that reflection at the barrier can be 
neglected. In that case, standard methods for differential equations 
suffice to find the solution [26,27]. If we assume the wave function 
|ψI 〉 in region I to be a plane wave with wave vector k0 we get for 
the wave function |ψIII〉 behind the potential barrier

|ψI 〉 = |k0〉 �⇒ |ψIII〉 =
+∞∑

n=−∞
Jn(β) e−inη |kn〉 (2)

where

β = 2
V

h̄ω
sin

ωτ

2
, η = ϕ + ωτ

2
+ π

2
(3)

τ = mL

h̄k0
= L

v0
, k2

n = k2
0 + 2m

h̄
nω (4)

For a more detailed derivation including the solution for region II 
as well we refer to [26,28].

In summary, a plane wave |k0〉 gets split up into a coherent 
superposition of plane waves |kn〉 whose energy is given by the 
incident energy E0 plus integer multiples of h̄ω. The transition 
probability for an energy exchange of nh̄ω is just the square of the 
Bessel function J 2

n of the n-th order. The argument of the Bessel 
function shows that an increasing amplitude V of the potential 
also increases the probability for exchanging larger amounts of en-
ergy.

Apart from this expected result, it also exhibits a geometric 
“resonance”-condition. If the “time-of-flight” τ through the field 
region and the oscillation frequency are tuned such that ωτ = 2lπ , 
l ∈ N, all Bessel functions Jn with n 
= 0 vanish and no energy is 
transferred at all. The plane wave even passes the potential com-
pletely unaltered since J0(0) = 1. That’s a remarkable difference 
between an oscillating and a static potential where at least phase 
factors are always attached to the wave function. An experimental 
implementation of the classical potential can be found in [28,29].

3. Quantized treatment of the field

Since the energy exchange between the harmonically oscillat-
ing potential and the particle is quantized by integer multiples 
of h̄ω most authors already speak of photon exchange processes 
although the potential stems from a purely classical field. This no-
tion is problematic since a formally correct introduction of the 
photon concept requires a quantization of the field generating the 
potential. For this purpose, the corresponding field equation has 
to be solved and a canonical quantization condition for Fourier 
Fig. 2. (Color online.) In the quantized field treatment, the particle’s position deter-
mines which of the overall wavefunctions |	I 〉, |	II〉 or |	III〉 describes the state 
of the composite quantum system. The spatial characteristics of the field do not 
change, it is always present between 0 and L, but the field state changes in accor-
dance with the particle due to their interaction.

amplitudes of the field is introduced which are then no longer 
complex-valued coefficients but interpreted as creation and anni-
hilation operators.

For the further, we assume that such a quantum field whose 
spatial mode is well approximated by the rectangular form gener-
ates the potential. The quantum system we observe now consists 
of particle and field together. The total state |	〉 of the compos-
ite quantum system is an element of the product Hilbert space 
Htotal = Hparticle ⊗ Hfield. If the particle is outside the field region 
the evolution of the state is given by Ĥ0 composed of the free 
single-system Hamiltonians ĥp

0 and ĥf
0 of particle and field

Ĥ0 = ĥp
0 ⊗ 1 + 1 ⊗ ĥf

0 (5)

ĥp
0 = p̂2

2m
, ĥf

0 = h̄ω
(

â†â + 1
2

)
(6)

Interaction between field and particle takes place if the particle 
is inside the field region which can be formally expressed by using 
the Heavyside θ -function in the quantized version of the sinusoidal 
driving term

Ĥ int = λ
(
θ(x̂) − θ(x̂ − L)

)
⊗

(
â† + â

)
(7)

where all constants have already been absorbed in the coupling 
parameter λ. Since the sheer presence of an interaction is con-
nected to the particle’s position we again distinguish between 
three different states |	I 〉, |	II〉, and |	III〉 for the composite quan-
tum system (see Fig. 2).

3.1. Fock states

As in the classical field case, we assume that the kinetic energy 
of the incoming particle is sufficiently high so that reflection at 
field entry can be neglected. Then, we can choose as ansatz for 
|	I 〉 the particle’s state to be a single plane wave with wave vector 
k0 and the field to be present in a distinct Fock state n0

|	I 〉 = |k0〉 ⊗ |n0〉 (8)

In order to get |	II〉, we switch to the position space represen-
tation of the particle’s part of the wave function and match |	I 〉
at xparticle ≡ x = 0 for all times t with the general solution in re-
gion II. It is given by an arbitrary linear superposition of plane 
waves for the particle and displaced Fock states for the field [23]. 
The continuity conditions uniquely determine the expansion coef-
ficients and yet |	II〉. At x = L, |	II〉 has to be matched with the 
general solution of the free Hamiltonian which is given by an arbi-
trary superposition of plane waves and Fock states. The state |	III〉
behind the field region then reads

|	III〉 =
∞∑

tn0n|kn0−n〉 ⊗ |n〉, k2
l = k2

0 + 2m

h̄
lω (9)
n=0
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Fig. 3. (Color online.) Transition probabilities Pn0,n for initial photon numbers n0

(plotted on the abscissa) and final photon number n (indicated on the ordinata) for 
coupling strengths � = 2 λ

h̄ω sin ωτ
2 = 0.0, � = 0.5, � = 1.0, � = 2.0.

with

tn0n = eiλ̄2ωτ
∞∑

q=0

〈n|D̂†(λ̄)|q〉〈q|D̂(λ̄)|n0〉e−i(q−n)ωτ (10)

where D̂ denotes the displacement operator, λ̄ = λ/h̄ω the cou-
pling constant in units of the photon energy, and τ = mL/h̄k0 the 
“time of flight” through the field region as in the classical case 
(Eq. (4)). Details of the calculation as well as the explicit result for 
|	II〉 can be found in [23]. The matrix tn0n gives the amplitudes for 
the transition from an initial photon number n0 to the final pho-
ton number n. The wave vector of the traversing particle changes 
accordingly from k0 to kn0−n . Every emission of field quanta is ab-
sorbed in the kinetic energy of the particle and vice versa. The 
final state is the coherent superposition of all such combinations 
|kn0−n〉 and |n〉 and therefore highly entangled.

The algebraic form of the transition matrix tn0n (Eq. (10)) can 
be further developed in order to get an analytic expression. The 
calculation is straightforward, but rather lengthy and requires the 
nontrivial Kummer transformation formula for confluent hypergeo-
metric functions. The key steps are outlined in Appendix A. Finally 
we arrive at

tn0n = ei
√

n0!
n! e− �2

2 �n−n0 Ln−n0
n0 (�2) (11)

where Lα
n (x) denotes the generalized Laguerre polynomial and

 = λ̄2 (ωτ − sinωτ) + (n − n0)
(ωτ

2
− π

2

)
(12)

� = 2λ̄ sin
ωτ

2
(13)

The coupling strength parameter � indicates the capacity of the 
particle–field system to exchange energy and contains the coupling 
constant λ (in units of h̄ω) and the sinusoidal resonance factor 
that already occurred the classical treatment. The probability that 
the initial photon number n0 changes to the final photon number 
n after the transmission of the particle through the field is given 
by Pn0,n = |tn0n|2.

Pn0,n = n0!
n! e−�2

(�2)n−n0
(
Ln−n0

n0 (�2)
)2

(14)

In Fig. 3, the transition probabilities Pn0,n for various coupling 
strengths � are depicted. As in the classical case, the probability 
for exchanging higher number of photons increases with increas-
ing coupling strength, but absorption and emission of the same 
number of photons are not equally probable. We have in general 
Pn0,n = Pn,n0 but Pn0,n0+q 
= Pn0,n0−q . This asymmetry is reflected 
in the expectation values of the energy of particle and field after 
the interaction process.

〈	III|ĥp
0 ⊗ 1|	III〉 = h̄2k2

0

2m
− h̄ω�2 (15)

〈	III|1 ⊗ hf
0|	III〉 = h̄ω

(
n0 + �2 + 1

2

)
(16)

Since we assumed a high energetic incoming particle for which 
reflection could be neglected the net energy transfer goes from 
particle to field. Not until the initial photon number becomes large 
with respect to the normed coupling constant n0 � λ̄ the symme-
try between emission and absorption is restored. We can then use 
from the appendix of [30]

〈n0 + l|D̂(λ̄)|n0 + r〉 = Jl−r(2λ̄
√

n0), n0 � λ̄ (17)

and apply Graf’s addition theorem for Bessel functions in (Eq. (10)) 
to get

Pn0,n0+q = Jq(2�
√

n0)
2 = Pn0,n0−q, n0 � λ̄ (18)

Large initial photon numbers indicate the transition to the classi-
cal field regime, and indeed, the Bessel function in (Eq. (18)) is 
reminiscent of the classical result (Eq. (2)). But, if we trace over 
the field state the particle is still present in an incoherent super-
position of the |kn〉 weighted with the J 2

n as to be expected from 
the entangled total state |	III〉. A proper transition from the quan-
tum to the classical case can only be achieved by starting with a 
coherent field state (see Section 3.4).

If the length L of the field region and the wave vector k0 are 
tuned such that the “resonance” condition ωτ = 2πn, n ∈N is ful-
filled no energy between particle and field is transferred as in the 
classical case. But, contrary to the classical treatment, an overall 
phase factor remains in form of |	III〉 = eiλ̄2ωτ |k0〉 ⊗|n0〉 and could 
be accessible in an interferometric setup.

3.2. Vacuum state

Another remarkable feature of the quantum field treatment can 
be revealed from the investigation of the vacuum state. For a clas-
sical field, vacuum is realized by simply setting the potential to 
zero resulting in an unaltered, free evolution of the particle’s plane 
wave (|ψI 〉 = |ψIII〉 = |k0〉). In the quantized treatment, vacuum is 
represented by an initial Fock state |n0 = 0〉 which still interacts 
with the particle and yields as final state |	III〉 behind the field 
region

|	I 〉 = |k0〉 ⊗ |0〉 ⇒ |	III〉 =
∞∑

n=0

t0n|k−n〉 ⊗ |n〉 (19)

with a photon exchange probability

P0,n = |t0n|2 = 1

n! e−�2
�2n (20)

The particle thus transfers energy to the vacuum field leading to 
a Poissonian distributed final photon number. Let’s consider, for 
example, a superconducting resonant circuit as source of the field. 
The magnetic field along the axis of a properly shaped coil is well 
approximated by the rectangular form. A particle with a magnetic 
dipole moment passing through the coil then interacts with the 
circuit and excites it with a measurable loss of kinetic energy even 
if the circuit is initially uncharged and there is classically no field 
it can couple to. The phenomenon that vacuum in quantum field 
theory does not mean to “no influence” as known from Casimir 
forces or Lamb shift is clearly visible here as well.
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Fig. 4. (Color online.) Probability distribution of the final photon number for differ-
ent coupling strengths � = 2 λ

h̄ω sin ωτ
2 if the field was initially in a thermal state 

(temperature T , kB T /h̄ω ≈ 10).

3.3. Thermal state

In realistic experimental situations, the pure vacuum state can 
not be achieved. Due to unavoidable coupling to the environment 
acting as heat bath with a finite temperature T higher photon 
numbers are excited as well and we encounter an incoherent, so-
called thermal state ρthermal for the field

ρthermal =
∞∑

n=0

yn(1 − y)|n〉〈n|, y = e
− h̄ω

kB T (21)

We now choose the field to be initially in such a thermal state. 
After the particle has traversed the field region, the probability 
P therm

n of finding the field in a distinct Fock state |n〉 is given by

P therm
n = e−�2(1−y) (1 − y) yn Ln

( − �2(1−y)2

y

)
(22)

where Ln denotes the ordinary Laguerre polynomial. As depicted 
in Fig. 4, the initial thermal distribution changes as soon as the 
coupling strength � reaches the order of kB T /h̄ω.

3.4. Coherent state

Now, we consider the field to be initially in a coherent state |α〉
labeled by the complex number α = |α|eiϕα

|	I 〉 = |k0〉 ⊗ |α〉, |α〉 = e− |α|2
2

∞∑
n=0

αn

√
n! |n〉 (23)

For the further evaluation of this expression we start from the al-
gebraic form of the transition matrix (Eq. (10)) and work in the 
position representation of the particle’s part of wave function. Ex-
pansion of the wave vectors kn (Eq. (9)) around the initial wave 
vector k0 enables us to absorb phase factors in the coherent state 
and evaluate the displacements. The projection onto the position 
eigenstate |x〉 ∈Hparticle after the transmission reads

〈x | 	III〉 = eiλ̄2ωτ e−iλ̄2 sin ωτ eik0x

× ei�|α| sin(ϕ�(x)−ϕα)|α + �eiϕ�(x)〉 (24)

where

ϕ�(x) = ωτ

2
− ω

v0
x − π

2
(25)

The entanglement between particle and field is now indicated by 
the explicit occurrence of the particle’s position coordinate x in the 
final (coherent) field state. If the particle is detected at a certain 
Fig. 5. (Color online.) Through the phase ϕ�(x), the final coherent state |α +
�eiϕ�(x)〉 depends on the particle’s position. Detecting high (low) photon numbers 
in the field is therefore correlated to positions x+ (x−) and vice versa.

Fig. 6. (Color online.) For a coherent initial field state |α〉 the field state after the 
transmission is given by an incoherent mixture ∫ dx |ξ〉〈ξ | of all coherent states 
|ξ〉 = |α + �eiϕ� 〉.

position x1 the field state is projected onto |α +�eiϕ�(x1)〉. We can 
now place two detectors at positions x+ and x− which satisfy

ϕ�(x+) ≡ ϕ+
� = ϕα + 2nπ (26)

ϕ�(x−) ≡ ϕ−
� = ϕα + 2(m − 1)π (27)

where n and m are arbitrary integers and take a look at the pho-
ton number distributions of the related coherent states. The phases 
ϕ� are chosen such that the average photon numbers are given 
by ||α| + �|2 for x+ and ||α| − �|2 for x− respectively. For a 
sufficiently high coupling strength � � 1

2 the corresponding dis-
tributions cease to overlap. Detecting the particle around x− thus 
increases the probability of having roughly ||α| − �|2 photons in 
the field whereas detection around x+ is connected to an average 
photon number of ||α| + �|2. Likewise, finding ||α| + �|2 photons 
in the field determines the particle’s position to be around x+ and 
analogously for x− (see Fig. 5). The photon number thus contains 
information about the particle’s position.

If no measurement on the particle is carried out the field state 
is obtained from the total density matrix ρ = |	III〉〈	III| by per-
forming the partial trace over the particle’s degrees of freedom. We 
get an incoherent mixture of coherent states for the field’s density 
matrix

ρfield =
∫

dx|α + �eiϕ�(x)〉〈α + �eiϕ�(x)| (28)

which can be illustrated in the Fresnel plane (see Fig. 6).
Like in case of Fock states, on average, the particle transfers 

energy to the field as indicated by the expectation values

〈	III|ĥp
0 ⊗ 1|	III〉 = h̄2k0

2m
− h̄ω�2 (29)

〈	III|1 ⊗ ĥp
0|	III〉 = h̄ω

(
|α|2 + �2 + 1

2

)
(30)

If we increase the mean photon number such that we can ne-
glect the coupling strength � against |α| we can simplify (Eq. (24)) 
and arrive at

|	III〉 = eiλ̄2ωτ e−iλ̄2 sin ωτ
+∞∑

n=−∞
Jn(�|α|)e−inη|kn〉 ⊗ |α〉 (31)

where we have use the abbreviation η of the classical section 
(Eq. (3)) with ϕα =̂−ϕ . Disregarding the back action of the particle 
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on the field thus leads to a simple product state of the composite 
quantum system and therefore to disentanglement. By tracing over 
the field, we obtain the particle’s state which is now a coherent 
superposition of |kn〉 weighted with the Bessel functions Jn and 
a phase factor e−inη as in the classical case. A general survey on 
the correspondence between time-independent Schrödinger equa-
tions for the composite particle–field system and time-dependent 
Schrödinger equations for the particle alone that contain the ex-
pression for the classical field as potential term can be found 
in [31].

If we choose the initial coherent state |α〉 to be the vacuum 
state |0〉 and therefore set α = 0 in Eq. (24) we consistently end 
up with the same final state as in Eq. (19).

At resonance (ωτ = 2πn, n ∈ N), no photon exchange takes 
place and the initial state again only obtains an overall phase fac-
tor and becomes |	III〉 = eiλ̄2ωτ |k0〉 ⊗ |α〉 after the interaction.

4. Conclusion

The quantum mechanical scattering on a rectangular potential 
created by a quantum field is completely analytically solvable for 
incoming particles whose energy is high enough to neglect reflec-
tions. Transition amplitudes and photon exchange probabilities can 
be entirely expressed in terms of standard functions for the most 
important types of initial field states, that is, Fock, thermal, and 
coherent states.

The quantized treatment of both particle and field reveals their 
entanglement in the interaction process. Therefore, the setup could 
be of interest for quantum information applications where a spa-
tially fixed (field) and a moveable component (particle) are re-
quired. For Fock states, entanglement actually occurs between the 
energy eigenstates of the particle and the photon number states of 
the field, but, for a coherent initial field state, the particle’s posi-
tion and the photon number get entangled.

Since the Hamiltonian treated here represents the fully quan-
tized version of the Tien–Gordon model which successfully de-
scribes transport in ac-driven nanostructures and forms the basis 
of all photon-assisted transport phenomena experimental tests of 
our predictions are feasible once the quantum state of the oscil-
lating device is known. Superconducting resonant circuits whose 
quantum features have been studied extensively in circuit qed 
could also provide the quantum barriers discussed here.

The Schrödinger equation of the composite system is time-
independent and thus, the total energy is conserved in the trans-
mission process. Though, photon emission and absorption are in 
general not equally probable, on average, the high-energetic, in-
coming particle transfers energy to the field. Only if the photon 
number in the field becomes large, the symmetry between emis-
sion and absorption is restored. However, for high number Fock 
states, entanglement is nevertheless maintained and the energy 
transfer happens incoherently. Just for coherent field states whose 
mean photon number is so high against the coupling strength that 
the influence of the particle on the field can be neglected the tran-
sition to the classical, coherent energy exchange becomes visible.

A remarkable feature of the fully quantized treatment is the 
interaction with the vacuum. Though from the classical point of 
view a free evolution of the particle should take place, the particle 
transfers energy to the field and their combined state changes.

For the experimentally more realistic situation of not a pure 
vacuum but a thermal field state visible effects occur once the cou-
pling constant becomes comparable to the thermal energy (kB T ) of 
the environmental heat bath.

At resonance, that is when the length of the field region and the 
particle’s wavelength are related such that destructive interference 
suppresses any photon exchange, the wave function nevertheless 
changes and obtains an overall phase factor. In the quantized treat-
ment, a completely unaltered evolution only happens in the trivial 
case of a vanishing coupling constant.

The investigation of the rectangular quantum potential already 
exhibits the formation of entanglement between particle and field 
as it is to be expected for arbitrarily shaped potentials as well, 
though with modified transition probabilities. Extension to 2- or 
3-dimensional scattering potentials could give rise to entanglement 
between the field state and the spatial direction of the outgoing 
wave thus also deployable in entanglement based quantum infor-
mation applications.
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Appendix A. Derivation of the analytic expression of the 
transition amplitude

In order to derive an analytic expression for the matrix tn0n

yielding the probability amplitudes for the transition from an ini-
tial photon number n0 to the final photon number n we start with 
its algebraic form as given by (Eq. (10))

tn0n = eiλ̄2ωτ
∞∑

q=0

〈n|D̂†(λ̄)|q〉〈q|D̂(λ̄)|n0〉e−i(q−n)ωτ (A.1)

By using standard identities of the Fock states, the creation/annihi-
lation operators â/â† and the displacement operator D̂ we rewrite

〈n|D̂†(λ̄)|q〉 = 〈0| ân

√
n! D̂†(λ̄)|q〉 = 1√

n! 〈λ̄| (â − λ̄
)n |q〉 (A.2)

Note, that 〈λ̄| stands for a coherent state and not a Fock state. 
We now exploit the binomial theorem and apply the creation op-
erators (with exponents k) to the Fock states |q〉 which are then 
projected onto the coherent state 〈λ̄| yielding its (q − k)-th expan-
sion coefficient. We proceed analogously with the matrix element 
〈q|D̂(λ̄)|n0〉 and are thus left with analytic summands only. The 
summations can be further performed if we exploit the nontrivial 
identity

∞∑
q=0

(q + k)!
(q + k − l)!

xq

q! =
∞∑

q=0

(
l

q

)(
k

q

)
q! xl−q ex (A.3)

which can be traced back to the Kummer transformation formula 
for confluent hypergeometric functions. This can be seen most eas-
ily when the sums from (A.3) are written as Kummer’s function 
M(a, b, z) (left sum) and as Tricomi’s function U (c, d, y) respec-
tively (right sum).

After we have used identity (A.3) on the summation over q the 
two other sums can be evaluated with the help of the binomial 
theorem. The remaining summation over q can be conveniently 
expressed with the generalized Laguerre polynomial Lα

n (x) which 
leads to the following compact analytic result for the transition 
matrix tn0n

tn0n = ei
√

n0!
n! e− �2

2 �n−n0 Ln−n0
n0 (�2) (A.4)

where

 = λ̄2 (ωτ − sinωτ) + (n − n0)
(ωτ

2
− π

2

)
(A.5)

� = 2λ̄ sin
ωτ

2
. (A.6)
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