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The Kochen–Specker theorem shows the incompatibility of noncontextual hidden variable theories

with quantum mechanics. Quantum contextuality is a more general concept than quantum non-locality

which is quite well tested in experiments using Bell inequalities. Within neutron interferometry we

performed an experimental test of the Kochen–Specker theorem with an inequality, which identifies

quantum contextuality, by using spin-path entanglement of single neutrons. Here entanglement is

achieved not between different particles, but between degrees of freedom of a single neutron, i.e.,

between spin and path degree of freedom. Appropriate combinations of the spin analysis and the

position of the phase shifter allow an experimental verification of the violation of an inequality derived

from the Kochen–Specker theorem. The observed violation 2:29170:008�1 clearly shows that

quantum mechanical predictions cannot be reproduced by noncontextual hidden variable theories.

& 2010 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

It was Einstein, Podolsky, and Rosen (EPR) [1] and afterwards Bell
[2] who shed light on the non-local properties between subsystems
in quantum mechanics. Separately Kochen and Specker [3] analysed
sets of measurements of compatible observables and found the
impossibility of their consistent coexistence, i.e., quantum indefi-
niteness of measurement results. In their scenario, quantum
contextuality, a more general concept compared to non-locality,
leads to striking phenomena predicted by quantum theory.

Bell inequalities [2] are constraints imposed by local hidden-
variable theories (LHVTs) on the values of some specific linear
combinations of the averages of the results of spacelike separated
experiments on distant systems. Reported experimental viola-
tions of Bell inequalities, e.g. with photons [4], neutrons [5] or
atoms [6], suggest that quantum mechanics (QM) cannot be
reproduced by LHVTs.

While violations of Bell’s inequalities due to nonlocal characters
of QM is impressive, conflict between measurements on a single-
system is another marvelous prediction of QM, as is first stated by
Kochen–Specker [3]. Quantum mechanical peculiarity is not limited
to spacelike separated systems, but found in measurements of a
composite non-separated system: it is important to investigate the
consequences of hidden-variable theories for (massive) non-space-
like separated quantum systems, such as neutrons.

LHVTs form a subset of a larger class of hidden-variable
theories known as noncontextual hidden-variable theories
(NCHVTs). In NCHVTs the result of a measurement of an
observable is assumed to be predetermined and not affected by
Y-NC-ND license. 

).
a (previous or simultaneous) suitable measurement of any other
compatible or co-measurable observable. It turns out that there
exists a conflict between the predictions of QM and NCHVTs
which is predicted by the KS theorem [3].

Here, we describe experimental demonstration of the violation
in line with the KS theorem by using a massive quantum systems,
in particular, two degrees of freedom of single neutrons within a
neutron interferometer.
2. Kochen–Specker theorem

The Kochen–Specker (KS) theorem states that NCHVTs are
incompatible with the predictions of QM (for a review see, e.g.,
Ref. [7]). The theorem is based on two assumptions: (i) value
definiteness: all observables defined for a system, e.g. A and B,
have predefined values, e.g. v(A) and v(B) and (ii) noncontex-
tuality: a system possesses a property independently of any
measurement context, i.e., independently of how the value is
measured. Due to assumption of noncontextuality the relations
v(A+B)¼v(A)+v(B) and vðA � BÞ ¼ vðAÞ � vðBÞ hold for mutually
compatible observables, which have a set of common eigenvec-
tors and thus are measurable together. One can show mathema-
tically that it is impossible to satisfy both relations for arbitrary
pairs of compatible operators A and B within QM.

The original proof by Kochen and Specker [3] involves 117
vectors in three dimensions. Peres [8] found a simpler proof with
nine observables in four dimensions (two spin-1

2 particles) which
was later extended by Mermin [7] into a state independent proof
(Mermin’s square). Mermin [9] also showed that for 10 obser-
vables in eight dimensions (three spin-1

2 particles, Mermin’s
pentagram) there exists a connection to the Greenberger–
Horne–Zeilinger (GHZ) version [10] of Bell’s theorem. Up to now
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Fig. 1. Above: a proposed experimental setup with a neutron interferometer. The

interferometer is set in a way that fulfills two functions: the first half works as a

state generator, and the second half works as a path measurement apparatus. In

both parts, a phase shifter (PS) and a pair of spin rotators (SR) are inserted. A spin

Y. Hasegawa et al. / Nuclear Instruments and Methods in Physics Research A 634 (2011) S21–S24S22
the simplest proof of the KS theorem was found by Cabello [11]
which uses 18 vectors in four dimensions.

We give a short explanation of the proof by Peres and Mermin
discussed in Ref. [7]. In four dimensions observables are repre-
sented by Pauli matrices of two spin-1

2 particles s1
i and s2

j where
i,j¼{x,y,z}. The square of each matrix is unity, the eigenvalues are
71, in each subspace the standard commutation relations for Pauli
matrices are satisfied, and the commutator of matrices from
different subspaces is zero ½s1

i ,s2
j � ¼ 0 for any i,j. Consider the

following nine observables Am arranged in a ‘‘magic square’’:

s1
x s2

x s1
x � s2

x �!þ1

s2
y s1

y s1
y � s2

y �!þ1

s1
xs2

y s1
ys2

x s1
z � s2

z �!þ1

k k k

þ1 þ1 �1

In each row and column the observables are mutually commuting
and hence compatible. In all rows and also in the first two columns
the product of the three observables gives +1 but in the last
column we get �1 for the product (due to sk

xsk
y ¼ isk

z for k¼1,2).
Thus the product of all rows and columns is �1. In NCHVTs we
assign to each observable a definite value v(Am). If we take the
product over all rows and columns each value v(Am) appears twice
leading to a total product of +1. This contradicts the QM
predictions.

In contrast to Bell’s theorem the KS theorem does not use
statistical predictions but relies on logical contradictions. How-
ever, since perfect correlations on which the proof is based are not
obtained in real experiments, it is useful to deduce (statistical)
inequalities from the KS theorem for experimental tests. There are
several proposals to test KS theorem, inequalities which use the
assumptions of contextuality together with additional QM
predictions, e.g., [12], inequalities which are solely based on the
assumptions of contextuality [13] as well as state-independent
inequalities [14]. The first experiments were done with single
photons [15] and ions [16] confirming a violation of a state-
independent version of the inequality.
measurement is carried out on the outgoing beam in the forward direction. Below:

three diagrams for the different measurement ‘‘contexts’’. (i) For measurements of

ss
x � s

p
x and ss

y � s
p
y: After going through a state generator (G), a state suffers a path

measurement (P) followed by a spin measurement (S). Consequently, each

outgoing beam gives the results of the two measurements. (ii) For measurements

of ss
ys

p
x � ss

xs
p
y: By tuning one of the spin rotators to a spin-flip operation in the

path measurement part, the second half of the interferometer together with a

spin analyzer (P+S) can discriminate four Bell states, which assign four outgoing

beams to the four possible results of the measurements. (iii) For measurements of

ss
ys

p
x � ss

y � s
p
x and ss

xs
p
y � ss

x � s
p
y: After the apparatus P+S, a state mixer (M)

eliminates the former information about the result of either observable, and is

followed by a path and a spin measurement.
3. Theoretical considerations for the experiment

Using inequalities derived from the KS theorem [13] one can
study statistical violations of non-contextual assumptions. Ex-
ploiting interference effects of matter waves together with
entanglement in a single-particle system, neutron interferometric
experiments [17] are suitable to exhibit phenomena associated
with the KS theorem. At the first stage of experimental tests of
quantum contextuality, we performed interferometric experi-
ments demonstrating Kochen–Specker-like phenomena [18].
Further theoretical analysis revealed an advanced scheme based
on the Peres–Mermin proof of the KS theorem and an experiment
with neutron interferometry was proposed [13] and depicted in
Fig. 1. Here, an improved test of the KS theorem with single
neutrons is described where the entanglement occurs between
two degrees of freedom in a single-particle system [19].

For the proof of the KS theorem, we consider single neutrons
prepared in a maximally entangled Bell-like state

jCBell
n S¼

1
ffiffiffi

2
p ðjkS� j I S�jmS� j II SÞ ð1Þ

where jmS and jkS denote spin-up and spin-down eigenstates of
the neutron, and jIS and jIIS denote the two beam paths in the
neutron interferometer [5]. The proof is based on six observables
ss

x, sp
x , ss

y, sp
y , ss

xs
p
y and ss

ys
p
x , where the superscripts s and p

indicate the spin and path degree of freedom, respectively,
and the following five quantum mechanical predictions for the
Bell-like state jCBell

n S:

ss
x � s

p
x jC

Bell
n S¼�jCBell

n S ð2aÞ

ss
y � s

p
yjC

Bell
n S¼�jCBell

n S ð2bÞ

ss
xs

p
y � s

s
x � s

p
yjC

Bell
n S¼ þjCBell

n S ð2cÞ

ss
ys

p
x � s

s
y � s

p
x jC

Bell
n S¼ þjCBell

n S ð2dÞ

ss
xs

p
y � s

s
ys

p
x jC

Bell
n S¼�jCBell

n S: ð2eÞ

The inconsistency arising in any attempt to ascribe the
predefined values �1 or +1 to each and every of the six
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observables can be easily seen by multiplying Eqs. (2a)–(2e). Since
each observable appears twice, the left hand sides give +1 while
the product of the right hand sides is �1.

Since experiments cannot show perfect correlations or anti-
correlations due to their finite precession, one needs a statistical
inequality for experimental testing: the linear combination of the
five expectation values with the respective quantum mechanical
predictions as linear coefficients. It can be shown that in any
NCHVTs

�/ss
x � s

p
xS�/s

s
y � s

p
ySþ/s

s
xs

p
y � s

s
x � s

p
yS

þ/ss
ys

p
x � s

s
y � s

p
xS�/s

s
xs

p
y � s

s
ys

p
xSr3 ð3Þ

in contrast to the prediction of 5 by QM. While Eqs. (2a)–(2b), and
(2e) represent state dependent predictions relying on the specific
properties of the neutron’s Bell-like state jCBell

n S, Eqs. (2c)–(2d)
are state-independent predictions which hold in any NCHVTs. In
other words, in any NCHVTs, /ss

xs
p
y � ss

x � s
p
yS¼ 1 and

/ss
ys

p
x � ss

y � s
p
xS¼ 1. Therefore, any NCHVTs must satisfy not only

inequality (3), but also the following inequality in a reduced form:

SKS ��/ss
x � s

p
xS�/s

s
y � s

p
yS�/s

s
xs

p
y � s

s
ys

p
xSr1, ð4Þ

whereas QM predicts SQM¼3. A violation of inequality (4) in
experiments reveals quantum contextuality.
4. Neutron interferometric experiments

The experiment was carried out at the neutron interferometer
instrument S18 at the high-flux reactor of the Institute Laue-
Langevin (ILL) in Grenoble, France. The setup of the experiment is
depicted in Fig. 2. A monochromatic beam, with mean wavelength
l0 ¼ 1:92 ðDl=l0 � 0:02) and 5� 5 mm2 beam cross-section, is
polarized by a bi-refringent magnetic field prism in ẑ�direction.
Due to the angular separation at the deflection, the interferometer
is adjusted so that only the spin-up component fulfills the Bragg
condition at the first interferometer plate (beam splitter). Behind
the beam splitter the neutron’s wave function is found in a
coherent superposition of path jIS and jIIS. Together with a radio-
frequency (RF) spin-flipper in path jIS, denoted as RFI

o, the first
half of the interferometer is used for the generation of the
maximally entangled Bell-like state, Eq. (1). In this experiment, RF
spin-flippers are used for the spin-flips to avoid unwanted
contrast reduction due to dephasing effect by the Mu-metal,
used in the previous experiment [18]. Apart from the RF flipper in
path jIS our experiment requires a second RF flipper in the
interferometer ðRFII

oÞ and another RF flipper in the O-beam (in the
forward direction) operated at half frequency ðRFo=2Þ.
Fig. 2. Experimental setup for studying Kochen–Specker theorem based on the Pere

generates the Bell-like state jCBell
n S. By turning either the RF flipper in the path II ðRF

oscillations are obtained in phase shifter w scans. From the data on the appropriate se

determined.
The first term in inequality (4) requires the measurement of ss
x

together with sp
x . Here, RFo=2 in the O-beam is needed for

compensating the energy difference due to the spin flip at RFI
o

[20], while the second RF flipper in the interferometer, RFII
o, is

turned off. For measuring the path observable, i.e. sp
x , the phase

shifter is adjusted to w¼ 0 and p in the path state
jCðwÞSp ¼ 1=

ffiffiffi

2
p
ðjISþeiwjIISÞ, which correspond to the projections

to jþxSp and j�xSp, the two eigenstates of sp
x , respectively. The

spin analysis in the x–y plane is accomplished by the combination
of the Larmor accelerator DC coil inducing a Larmor phase a¼ 0
and p, a p=2 DC spin-rotator and an analyzing supermirror. This
configuration allows projective measurements along jþxSs and
j�xSs direction, the two eigenstates of ss

x.
The experimental setup for the second term in inequality (4) is

identical with the one for the first term, but the measurement of
ss

y together with sp
y is achieved with the settings w¼ p=2,3p=2

and a¼ p=2,3p=2. Typical intensity oscillations with a contrast of
about 67% for the successive measurement of the path and the
spin component are shown in Fig. 3 top. The expectation values
are experimentally determined from the count rates

Eða,wÞ ¼ Nða,wÞþNðaþp,wþpÞ�Nðaþp,wÞ�Nða,wþpÞ
Nða,wÞþNðaþp,wþpÞþNðaþp,wÞþNða,wþpÞ ð5Þ

where Nða,wÞ denotes the count rate for the joint measurement of
spin and path. The required count rates at appropriate settings of
a and w are extracted from least squares fits in Fig. 3 top, indicated
by the vertical dashed lines. From these intensities the
expectation values were determined as /ss

x � s
p
xS� Eð0,0Þ

¼�0:67970:005 and /ss
y � s

p
yS� Eðp=2,p=2Þ ¼ �0:68270:005.

The measured values deviate from the theoretically expected �1
mainly due to the reduced contrast.

The third term in inequality (4) requires the measurement of
ss

xs
p
y together with ss

ys
p
x . Measuring the product of these two

observables simultaneously implies the discrimination of the four
possible outcomes ðss

xs
p
y ,ss

ys
p
x Þ ¼ fðþ1,þ1Þ,ð�1,�1Þ,ðþ1,�1Þ,ð�1,

þ1Þg, which is equivalent to a complete Bell-state discrimination.
The two operators ss

xs
p
y and ss

ys
p
x have the four common Bell-like

eigenstates

jj7S¼ 1
ffiffi

2
p ðjkS� jIS7 ijmS� jIISÞ ð6aÞ

jf7S¼ 1
ffiffi

2
p ðjmS� jIS7 ijkS� jIISÞ ð6bÞ

with the corresponding eigenvalue equations

ss
xs

p
yjj7S¼ 7 jj7S,ss

ys
p
x jj7S¼ 8 jj7S ð7aÞ

ss
xs

p
yjf7S¼ 7 jf7S,ss

ys
p
x jf7S¼ 7 jf7S: ð7bÞ
s–Mermin proof with neutron interferometer. The RF flipper in the path I ðRFI
oÞ

II
oÞ or another RF flipper ðRFo=2Þ on, together with suitable spin analysis, intensity

ttings, expectation values of the measurements ss
x � s

p
x ,ss

y � s
p
y , and ss

xs
p
y � ss

ys
p
x are



Fig. 3. Typical intensity modulations obtained by varying the phase w for the path

subspace. The spin analysis of 7x- and 7y�directions were involved (top).

Another spin-flipper in the interferometer was turned on and the spin analysis of

7z�directions were carried out (bottom).
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It follows that the outcome �1 for the product measurement of
ss

xs
p
y and ss

ys
p
x is obtained for jj7S, while the states jf7S yield the

result +1. In practice, this Bell-state discrimination is accomplished by
the second RF flipper in the interferometer, i.e. transforming the state
jCBell

n S-1=
ffiffiffi

2
p
ðjkS� jIS�jkS� jIISÞ. When the DC spin-rotator in

the O-beam is adjusted to induce a p�flip, only jkS�spin
components reach the detector. Inducing a relative phase w between
the two beam paths in the interferometer allows then for projections
to the state jjðwÞS¼ 1=

ffiffiffi

2
p
ðjkS� jISþeiwjmS� jIISÞ. According to

the definition of jj7S, given in Eq. (6a), phase settings of w¼7p=2
correspond to the measurement of jj7S. The jmS�spin analysis is
achieved by switching the DC spin-rotator off, where neutrons in
the state jfðwÞS¼ 1=

ffiffiffi

2
p
ðjmS� jISþeiwjkS� jIISÞ can be selected,

yielding a jf7S measurement for w¼ 7p=2. By rotating
the phase shifter, clear sinusoidal intensity oscillation and a
low-intensity fluctuation were observed, which is depicted in
Fig. 3 bottom. The expectation value /ss

xs
p
y � ss

ys
p
xS is derived using

the relation

Eu¼
Nuðfþ ÞþNuðf�Þ�Nuðjþ Þ�Nuðj�Þ
Nuðfþ ÞþNuðf�ÞþNuðjþ ÞþNuðj�Þ

ð8Þ

where Nu denotes the neutron count rate at the desired projections. As
done before, least square fits were applied to deduce the count rates
at the four projections. From the intensities on the dashed lines in the
figure, we obtained the value /ss

xs
p
y � ss

ys
p
xS� Eu¼�0:9370:003.
The observed intensities reflect the quantum mechanical
predictions for the measurement of the four Bell-like states given
by the expectation values /Cjj7S/j7 jCS¼ 1

2 and /Cjf7S
/f7 jCS¼ 0. The fidelity of the experimental Bell-state discrimina-
tion is estimated roughly to 93%.

With the three experimentally derived expectation values we
can finally test inequality (4). We obtain

Sexp ¼ 2:29170:008�1 ð9Þ

which is below the theoretically predicted value of 3 because of
imperfect contrasts in the experiment. This value clearly confirms
the conflict with NCHVTs.
5. Concluding remarks

Neutron interferometric testing of the KS theorem is described.
Entanglement between degrees of freedom of single neutrons is
exploited: a Bell-like state comprising spin-path entanglement is
generated. The proof is based on the Peres–Mermin criteria. An
inequality was derived for the evaluation of the experimental data.
Expectation values of three different contexts are determined: the
final result, Eq. (9), clearly exhibits the conflict between NCHVTs and
QM. We accomplish further studies of quantum contextuality with
the use of triply entangled (spin-path-energy entangled) states for
single neutrons. In addition, neutron polarimeter experiments are
used for similar studies, where tunable multi-energy levels in
addition to spin can be manipulated with very high efficiency.
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