117 research outputs found

    Companion animals and child/adolescent development: a systematic review of the evidence

    Get PDF
    Childhood and adolescence are important developmental phases which influence health and well-being across the life span. Social relationships are fundamental to child and adolescent development; yet studies have been limited to children’s relationships with other humans. This paper provides an evidence review for the potential associations between pet ownership and emotional; behavioural; cognitive; educational and social developmental outcomes. As the field is in the early stages; a broad set of inclusion criteria was applied. A systematic search of databases and grey literature sources found twenty-two studies meeting selection criteria. The review found evidence for an association between pet ownership and a wide range of emotional health benefits from childhood pet ownership; particularly for self-esteem and loneliness. The findings regarding childhood anxiety and depression were inconclusive. Studies also showed evidence of an association between pet ownership and educational and cognitive benefits; for example, in perspective-taking abilities and intellectual development. Evidence on behavioural development was unclear due to a lack of high quality research. Studies on pet ownership and social development provided evidence for an association with increased social competence; social networks; social interaction and social play behaviour. Overall, pet ownership and the significance of children’s bonds with companion animals have been underexplored; there is a shortage of high quality and longitudinal studies in all outcomes. Prospective studies that control for a wide range of confounders are required

    Exposure to a Mixture of Metals and Growth Indicators in 6–11‑Year‑Old Children from the 2013–2016 NHANES

    Get PDF
    Lead (Pb), mercury (Hg), and fuoride (F) exposure during childhood is of concern owing to their toxicity. Also, evidence suggests that high and low exposure levels to manganese (Mn) and selenium (Se) during this vulnerable period are associated with an increased risk of adverse health efects. A reduced growth is associated with high Pb and F exposure; however, little is known about their impact on children’s body size, and there is a lack of consensus on the efects of Hg, Mn, and Se exposure on children’s anthropometric measures. This is particularly true for childhood metal co-exposures at levels relevant to the general population. We investigated the joint efects of exposure to a metal mixture (Pb, Mn, Hg, and Se in blood and F in plasma) on 6–11-year-old US children’s anthropometry (n=1634). Median F, Pb, Mn, Hg, and Se concentrations were 0.3 µmol/L, 0.5 µg/dL, 10.2 µg/L, 0.3 µg/L, and 178.0 µg/L, respectively. The joint efects of the fve metals were modeled using Bayesian kernel machine and linear regressions. Pb and Mn showed opposite directions of associations with all outcome measured, where Pb was inversely associated with anthropometry. For body mass index and waist circumference, the efect estimates for Pb and Mn appeared stronger at high and low concentrations of the other metals of the mixture, respectively. Our fndings suggest that metal co-exposures may infuence children’s body mass and linear growth indicators, and that such relations may difer by the exposure levels of the components of the metal mixture

    Inconsistent Effects of Iron-Folic Acid and/or Zinc Supplementation on the Cognitive Development of Infants

    Get PDF
    Despite concerns over the neurocognitive effects of micronutrient deficiencies in infancy, few studies have examined the effects of micronutrient supplementation on specific cognitive indicators. This study investigated, in 2002, the effects of iron-folic acid and/or zinc supplementation on the results of Fagan Test of Infant Intelligence (FTII) and the A-not-B Task of executive functioning among 367 Nepali infants living in Sarlahi district. Infants were enrolled in a cluster-randomized, placebo-controlled clinical trial of daily supplementation with 5 mg of zinc, 6.25 mg of iron with 25 µg of folic acid, or zinc-iron-folic acid, or placebo. These were tested on both the tasks using five indicators of information processing: preference for novelty (FTII), fixation duration (FTII), accelerated performance (≥85% correct; A-not-B), deteriorated performance (<75% correct and >1 error on repeat-following-correct trails; A-not-B), and the A-not-B error (A-not-B). At 39 and 52 weeks, 247 and 333 infants respectively attempted the cognitive tests; 213 made an attempt to solve both the tests. The likelihood of females completing the A-not-B Task was lower compared to males when cluster randomization was controlled [odds ratio=0.67; 95% confidence interval 0.46-0.97; p<0.05]. All of the five cognitive outcomes were modelled in linear and logistic regression. The results were not consistent across either the testing sessions or the information-processing indicators. Neither the combined nor the individual micronutrient supplements improved the performance on the FTII or the A-not-B Task (p>0.05). These findings suggest that broader interventions (both in terms of scope and duration) are needed for infants who face many biological and social stressors

    Effect of calcium supplementation on bone resorption in pregnancy and the early postpartum: a randomized controlled trial in Mexican Women

    Full text link
    Abstract Background Calcium needs are physiologically upregulated during pregnancy and lactation to meet demands of the developing fetus and breastfeeding infant. Maternal calcium homeostasis is maintained by hormonal adaptive mechanisms, thus, the role of dietary calcium supplementation in altering maternal responses to fetal-infant demand for calcium is thought to be limited. However, increased calcium absorption is directly related to maternal calcium intake and dietary supplementation has been suggested to prevent transient bone loss associated with childbearing. Methods In a double-blind, randomized placebo-controlled trial, we randomly assigned 670 women in their first trimester of pregnancy to 1,200 mg/day calcium (N = 334) or placebo (N = 336). Subjects were followed through 1-month postpartum and the effect on urinary cross-linked N-telopeptides (NTx) of type I collagen, a specific marker of bone resorption, was evaluated using an intent-to-treat analysis. Women with a baseline and at least one follow-up measurement (N = 563; 84%) were included. Subsequent analyses were conducted stratifying subjects by compliance assessed using pill counts. In random subsets of participants, bone-specific alkaline phosphatase (BAP) (N = 100) and quantitative ultrasound (QUS) (N = 290) were also measured. Results Calcium was associated with an overall reduction of 15.8% in urinary NTx relative to placebo (p < 0.001). Among those who consumed ≥50%, ≥67%, and ≥75% of pills, respectively, the effect was associated with 17.3%, 21.3%, and 22.1% reductions in bone resorption (all p < 0.001). There was no significant effect of calcium on bone formation measured by BAP. However, by 1-month postpartum, those in the calcium group had significantly lower NTx/BAP ratios than those in the placebo group (p = 0.04) indicating a net reduction in bone loss in the supplement group by the end of follow-up. Among subjects who consumed ≥50% and ≥75% of pills, respectively, calcium was also associated with an increase of 26.3 m/s (p = 0.03) and 59.0 m/s (p = 0.009) in radial SOS relative to placebo by 1-month postpartum. Conclusions Calcium administered during pregnancy and the early postpartum period, to women with intakes around adequacy, was associated with reduced bone resorption and, thus, may constitute a practical intervention to prevent transient skeletal loss associated with childbearing. Trial registration ClinicalTrials.gov Identifier NCT00558623http://deepblue.lib.umich.edu/bitstream/2027.42/110126/1/12937_2014_Article_851.pd
    • …
    corecore